Control 1 (A) : Artithmetiques, Calcul vectoriel et projection
📅 October 29, 2024 | 👁️ Views: 57

\documentclass[12pt,a4paper]{article}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=1.00cm]{geometry}
\usepackage{fontspec}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{setspace}
\usepackage{multirow}
\usepackage{xcolor}
\usepackage[ddmmyyyy]{datetime}
\usepackage{tikz}
\usetikzlibrary{shapes,decorations.text}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
\newcolumntype{C}{>{\Centering\arraybackslash}X}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
\end{tikzpicture}
}
\newcommand{\stamp}[2]{
\begin{tikzpicture}[remember picture, overlay]
\coordinate (A) at (#1,#2);
\draw[red!50] (A) circle (1.9cm);
% Draw the inner circle
\draw[red!50] (A) circle (1.4cm);
% Draw the curved line
\draw[red!50, decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|★MOSAID RADOUAN★},
text align={align=center}, raise=-3pt}] (A) ++ (180:1.6cm) arc (180:0:1.6cm);
\draw[decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|∞★~mosaid.xyz~★∞ },
text align={align=center}, raise=-6.5pt}] (A) ++ (180:1.53cm) arc (-180:0:1.53cm);
\node[red!75,font=\fontsize{48}{48}\fontspec{DejaVu Sans}\bfseries\selectfont] at (A) {✷};
\end{tikzpicture}
}
\everymath{\displaystyle}
\setstretch{1.2}
\newenvironment{mycontent}{%
\thispagestyle{empty}
\noindent
\begin{tabularx}{\textwidth}{@{} lCr @{}}
Lycee Taghzirt\textbf{/}Prof MOSAID &
2024-2025\textbf{/Devoir 1 S01}\ccc{A}&
TCSF \textbf{/}2h\\
\bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\textbf{\underline{Exercice 1:}}(12pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.95\textwidth}}
& 1. Soient les nombres $x=2420$ et $y=6930$\\
2& \hspace*{0.5cm}a. Décomposer les deux nombres $x$ et $y$ en produits de facteurs premiers\\
2& \hspace*{0.5cm}b. Déterminer $pgcd(x,y)$ et $ppcm(x,y)$\\
2& \hspace*{0.5cm}c. Simplifier $\sqrt{5x}$ et $\sqrt{\frac{35y}{22}}$\\
2& \hspace*{0.5cm}d. Utiliser l'algorithme d'euclid pour determiner $pgcd(x,y)$\\
1& 2. Le nombre 371 est il un nombre premier ? justifier.\\
2& 3. Soit $n\in \mathbb{N}$. Etudier la parité du nombre $a=n^2-n+1$\\
1& 4. Déterminer l'ensemble des diviseurs de 42\\
\end{tabular}
\stamp{16}{0}
\\
\noindent
\textbf{\underline{Exercice 2:}}(8pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.95\textwidth}}
& Soit $ABC$ un triangle. Soient les points $I$, $J$ et $K$ tels que\\
& \hspace*{1cm}$\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AB}$~~~~;~~~~~
$\overrightarrow{AJ}=\frac{2}{5}\overrightarrow{AC}$~~~~;~~~~~
$\overrightarrow{BK}=-2\overrightarrow{BC}$\\
3& 1. Construire une figure\\
2& 2. Montrer que
$\overrightarrow{IJ}=-\frac{1}{2}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}$~~~~et~~~~~
$\overrightarrow{IK}=\frac{5}{2}\overrightarrow{AB}-2\overrightarrow{AC}$\\
2& 3. Montrer que $\overrightarrow{IJ}$ et $\overrightarrow{IK}$ sont colinèaires\\
1& 4. Montrer que les points I, J et K sont alignés.
\end{tabular}\\
\vspace*{-1cm}
\textcolor{white}{.}\hfill \underline{MOSAID le \today}\\
\vspace*{-4cm}
\textcolor{white}{.}\hfill \mylink\\
}% end of mycontent
\begin{document}
\begin{mycontent}\end{mycontent}
\textcolor{white}{.}\\[6cm]
\begin{mycontent}\end{mycontent}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Control 1 (A) : Artithmetiques, Calcul vectoriel et projection (PDF)