Devoir 02 S01

📅 December 08, 2025   |   👁️ Views: 1




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

    

\documentclass[a4paper,12pt]{article}
% This file now contains only packages and settings
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{tcolorbox,varwidth}

\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{fancyhdr}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
    colorlinks=true,
    urlcolor=magenta
}

% French language support
    \usepackage[french]{babel}



% Two-page layout (conditionally included)


% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}

\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}

\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}

\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}

% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID}  % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 02 - S01}
\def\schoolname{\textbf{Lycée :} Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}

% --- Exam-specific definitions ---

% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings

% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}

\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}

\newcommand{\ccc}[1]{
    \begin{tikzpicture}[overlay, remember picture]
        \node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
    \end{tikzpicture}
}

% Document spacing
\setstretch{1.3}

% Math display style
\everymath{\displaystyle}

%\AtBeginDocument{\fontsize{15}{17}\selectfont}

%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}

\SetEnumitemKey{tight}{
    leftmargin=*,
    itemsep=0pt,
    topsep=0pt,
    parsep=0pt,
    partopsep=0pt,
    before=\vspace{-\baselineskip},   % reduce space before
    after=\vspace{-\baselineskip}     % reduce space after
}



% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}

% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}

% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}

% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams

% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}

% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}

% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------

% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}


% --- Theme 11: Chevron arrow banner (as in scanned sheet) ---
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}

\newtcolorbox{exothemeeleven}[2][]{%
  enhanced,
  breakable,
  width=\linewidth,
  colback=white,
  colframe=white,
  boxrule=0pt,
  left=0pt, right=0pt, top=5pt, bottom=0pt,
  boxsep=0pt,
  before skip=5pt, after skip=5pt,
  interior style={fill=none, top color=white, bottom color=white},
  title={\#2},
  boxed title style={empty, boxrule=0pt, top=0pt, bottom=0pt},
  attach boxed title to top left={yshift=0pt},
  varwidth boxed title=0.9\linewidth,
  before upper={\parskip=4pt},
  overlay unbroken={
    % Chevron banner background
    \begin{scope}[shift={(frame.north west)}]
      \fill[bannerblue] (0,0) rectangle (\linewidth,0.8);
      \fill[arrowblue] (-0.4,0) -- (0.4,0.4) -- (-0.4,0.8) -- (0,0.4) -- cycle;
      \node[anchor=west, font=\bfseries] at (0.4,0.4)
        {\tcbtitletext};
    \end{scope}
  },
  #1
}


\newcommand{\printexo}[3]{%
  \if\relax\detokenize{\#2}\relax
    \def\fulltitle{Exercice #1}%
  \else
    \def\fulltitle{Exercice #1~#2}%
  \fi
  \begin{exothemeeleven}{\fulltitle}#3\end{exothemeeleven}%
  \vspace{0.2cm}%
}

% --- Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
  \arrayrulecolor{lightgray}
  \begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
      \textbf{\classname} & \centering \textbf{\examtitle}
      & \ddate \\
      \wsite & \centering \large\textbf{\secondtitle}
      &\hfill
        \begin{tabular}{|c}
          \hline
          \textbf{~~\professor}
        \end{tabular}\\
      \hline
  \end{tabular}
  \arrayrulecolor{black}
}

\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
  \printheadnine
}%
\pagestyle{fancy}

\begin{document}



% Exercise 1 (originally 1)
\printexo{1}{: (6.5 pts)}{
On considère la suite réelle \((u_n)\) définie par :
~$
u_0 = 5 \quad \text{et} \quad (\forall n \in \mathbb{N}) \quad u_{n+1} = \frac{5u_n - 4}{u_n}
$~
\begin{enumerate}[label=\arabic*)]
    \item Calculer \(u_1\) puis montrer que : \((\forall n \in \mathbb{N}) : u_n > 4\). \hfill (1 point)

    \item
    \begin{enumerate}[label=(\alph*)]
        \item Vérifier que : \(u_{n+1} - u_n = \frac{(u_n - 1)(4 - u_n)}{u_n}\) pour tout \(n \in \mathbb{N}\). \hfill (0,75 point)
        \item Montrer que la suite \((u_n)\) est décroissante. En déduire que : \((\forall n \in \mathbb{N}) : u_n \leq 5\). \hfill (0,75 point)
    \end{enumerate}

    \item Soit \((v_n)_{n \in \mathbb{N}}\) la suite réelle définie par : \(v_n = \frac{u_n - 4}{u_n - 1}\).
    \begin{enumerate}[label=(\alph*)]
        \item Montrer que \((v_n)\) est une suite géométrique de raison \(q = \frac{1}{4}\). \hfill (1 point)
        \item Écrire \(v_n\) en fonction de \(n\). \hfill (0,5 point)
        \item Montrer que : \((\forall n \in \mathbb{N}) : u_n = \frac{1 - 4^{n+2}}{1 - 4^{n+1}}\), puis calculer \(\lim\limits_{n \to +\infty} u_n\). \hfill (1 point)
    \end{enumerate}

    \item On pose pour tout \(n \in \mathbb{N}^* : S_n = v_0 + v_1 + \cdots + v_n\) et \(T_n = \cos(\pi S_n)\).
    \begin{enumerate}[label=(\alph*)]
        \item Montrer que : \((\forall n \in \mathbb{N}) : S_n = \frac{1}{3} \left(1 - \left(\frac{1}{4}\right)^{n+1}\right)\). \hfill (1 point)
        \item En déduire la limite de la suite \((T_n)\). \hfill (0,5 point)
    \end{enumerate}
\end{enumerate}
}

% Exercise 2 (originally 2)
\printexo{2}{: (13 pts)}{
On considère la fonction numérique \( f \) définie par : \( f(x) = \dfrac{x+1}{2\sqrt{x}} \) et \( (C_f) \) sa courbe représentative dans un repère orthonormé \( (O; \vec{i}, \vec{j}) \) telles que : \( \|\vec{i}\| = \|\vec{j}\| = 1\text{cm} \)
\begin{enumerate}[label=\arabic*)]
    \item Vérifier que \( D_f = ]0; +\infty[ \). \dotfill (0,5 pt)
    \item Montrer que : \( \displaystyle\lim_{x \to 0^+} f(x) = +\infty \), puis interpréter le résultat géométriquement. \dotfill (1 pt)
    \item Calculer : \( \displaystyle\lim_{x \to +\infty} f(x) \) et \( \displaystyle\lim_{x \to +\infty} \dfrac{f(x)}{x} \), puis en déduire la nature de la branche infinie de \( (C_f) \) au voisinage de \( +\infty \). \dotfill (1 pt)
    \item
      \begin{enumerate}
          \item
      Montrer que : \( (\forall x \in D_f) : f(x) - x = \dfrac{(1-\sqrt{x})(2x+\sqrt{x}+1)}{2\sqrt{x}} \). \dotfill (1 pt)
    \item En déduire la position relative de \( (C_f) \) et la droite \( (\Delta) : y = x \). \dotfill (1 pt)
      \end{enumerate}
    \item
      \begin{enumerate}
    \item Montrer que : \( (\forall x \in ]0; +\infty[) : f'(x) = \dfrac{x-1}{4\sqrt{x^3}} \). \dotfill (1 pt)
    \item En déduire que \( f \) est strictement croissante sur \( [1; +\infty[ \) et décroissante sur \( ]0; 1] \). \dotfill (1 pt)
      \end{enumerate}
    \item
      \begin{enumerate}
    \item Montrer que : \( (\forall x \in ]0; +\infty[) : f''(x) = \dfrac{3-x}{8\sqrt{x^5}} \). \dotfill (1 pt)
    \item Déduire la concavité de \( (C_f) \) et déterminer son point d'inflexion s'il existe. \dotfill (1 pt)
      \end{enumerate}
    \item
      \begin{enumerate}
        \item Déterminer les primitives de \( f \) sur \( ]0; +\infty[ \) (\textbf{remarquez que} : \( f(x) = \dfrac{\sqrt{x}}{2} + \dfrac{1}{2\sqrt{x}} \)). \dotfill (1 pt)
    \item En déduire la fonction primitive \( F \) de \( f \) vérifiant : \( F(1) = 0 \). \dotfill (1 pt)
      \end{enumerate}
    \item Construire dans le même repère la droite \( (\Delta) \) et la courbe \( (C_f) \). \dotfill (1 pt)
    \item On considère la suite \( (u_n) \) définie par : \( u_0 = 4 \), \( u_{n+1} = f(u_n) \) avec \( n \in \mathbb{N} \).
    \begin{enumerate}[label=\alph*)]
        \item Montrer que : \( (\forall n \in \mathbb{N}) : u_n \geq 1 \). \dotfill (1 pt)
        \item Montrer que \( (u_n) \) est décroissante. \dotfill (0,5 pt)
        \item En déduire que la suite \( (u_n) \) est convergente, puis calculer \( \displaystyle\lim_{n \to +\infty} u_n \). \dotfill (1 pt)
    \end{enumerate}
\end{enumerate}
}








\end{document}


    

Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir 02 S01 (PDF)

if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع

Buy me a coffee — إشتر لي قهوة

PayPal.me • عبر بايبال

Or bank transfer • أو حوالة بنكية

Titulaire : RADOUAN MOSAID
RIB : 230 090 6501953211022000 65
IBAN : MA64 2300 9065 0195 3211 0220 0065
BIC / SWIFT : CIHMMAMC