Control 03, S01

📅 December 27, 2025   |   👁️ Views: 1




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

    

\documentclass[a4paper,12pt]{article}

\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}

\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage[most]{tcolorbox}


\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
    colorlinks=true,
    urlcolor=magenta
}

\usepackage{fancyhdr}

% French language support
\usepackage[french]{babel}

% Bottom message in Arabic requires bidi package
\usepackage{bidi}
\newfontfamily\arabicfont[Script=Arabic,Scale=1.1]{Amiri}

% Two-page layout (conditionally included)



% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}

\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}

\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}

\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}

% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID}  % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 03 - S01, Par R. MOUNCIF}
\def\schoolname{Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}


% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings



% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}

\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}

\newcommand{\ccc}[1]{
    \begin{tikzpicture}[overlay, remember picture]
        \node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
    \end{tikzpicture}
}


\newcommand{\circled}[1]{%
  \tikz[baseline=(char.base)]{
    \node[shape=circle,draw,inner sep=1pt, font=\bf] (char) {\#1};}%
}



% Document spacing
\setstretch{1.3}

% Math display style
\everymath{\displaystyle}

%\mathversion{bold}

%\AtBeginDocument{\fontsize{15}{17}\selectfont}

%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}

\newcommand{\dfp}[1]{\dotfill (\bf{\#1 pt})}

\SetEnumitemKey{tight}{
    leftmargin=*,
    itemsep=0pt,
    topsep=0pt,
    parsep=0pt,
    partopsep=0pt,
    before=\vspace{-2pt},   % reduce space before
    after=\vspace{-2pt}     % reduce space after
}



% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}

% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}

% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}

% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams

% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}

% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}

% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------

% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% --- Theme 12: Decorated side band (LTR / left-oriented) ---
\newtcolorbox{exothemetwelve}[2][]{%
  before=\centering,
  after={},
  before skip=0pt,
  after skip=0pt,
  breakable,
  enhanced,
  colframe=cyan,
  colback=cyan!5,
  sharp corners,
  arc=3mm,
  rounded corners=southeast,
  arc is angular,
  attach boxed title to top left={yshift*=-\tcboxedtitleheight},
  title=#2,
  fonttitle=\bfseries,
  coltitle=yellow!50,
  boxed title style={
    left=1mm,
    frame hidden,
    sharp corners,
    colback=cyan,
    interior code app={
      \path[fill=cyan, path fading=east]
        ([xshift=-0.1mm]interior.north east)
        rectangle
        ([xshift=1cm]interior.south east);
      \begin{scope}
        \clip
          ([yshift=-0.1mm,xshift=-6mm]interior.north east)
          rectangle
          ([xshift=1.5cm]interior.south east);
        \foreach \i in {0,1,2,3,4,5}{
          \draw[cyan!5,line width=0.5mm,transform canvas={xshift=\i*1.5mm}]
            ([yshift=-2mm]interior.south east)
            --
            ([xshift=3mm]interior.north east);
        }
      \end{scope}
    }
  },
  drop fuzzy shadow southeast=cyan,
  #1
}

\newcommand{\printexo}[3]{%
  \if\relax\detokenize{\#2}\relax
    \def\fulltitle{Exercise #1}%
  \else
    \def\fulltitle{Exercise #1~#2}%
  \fi
  \begin{exothemetwelve}{\fulltitle}
  #3
  \end{exothemetwelve}
  \vspace{0.2cm}%
}

% --- Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
  \arrayrulecolor{lightgray}
  \begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
      \textbf{\classname} & \centering \textbf{\examtitle}
      & \ddate \\
      \wsite & \centering \large\textbf{\secondtitle}
      &\hfill
        \begin{tabular}{|c}
          \hline
          \textbf{~~\professor}
        \end{tabular}\\
      \hline
  \end{tabular}
  \arrayrulecolor{black}
}

\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
  \printheadnine
}%
\pagestyle{fancy}

\begin{document}



\vspace*{-0.75cm}
% Exercise 1 (originally 1)
\printexo{1}{}{
On considère la fonction numérique \(f\) définie sur \(]-\infty; 3[\) par :
~\(
f(x) = \frac{x}{\sqrt{3-x}} \)~
 et soit  ~$(C_f)$~ sa courbe représentative dans un repère orthonormé ~$ (O; \vec{i}; \vec{j})$~.
\begin{enumerate}[tight]
    \item Calculer :
    ~\(
    \lim_{x \to 3^-} f(x), \text{ puis interpréter le résultat graphiquement.}
    \)~

    \item Montrer que :
    ~\(
    \lim_{x \to -\infty} f(x) = -\infty \text{ et que : } \lim_{x \to -\infty} \frac{f(x)}{x} = 0,
    \)~
    puis en déduire la branche infinie de \((C_f)\) au voisinage de \(-\infty\).

    \item Montrer que :
    ~\(
    \forall x \in ]-\infty; 3[ : f'(x) = \frac{6-x}{2\sqrt{3-x}(3-x)},
    \)~
    puis justifier que \(f\) est strictement croissante sur \(]-\infty; 3[\).

    \item
    \begin{enumerate}[tight]
        \item Montrer que :
        ~\(
        \forall x \in ]-\infty; 3[ : f(x) - x = \frac{x(x-2)}{\sqrt{3-x}(1+\sqrt{3-x})}.
        \)~
        \item En déduire la position relative de \((C_f)\) et la droite (D) d’équation \(y = x\).
    \end{enumerate}

    \item Déterminer l’équation de la tangente \((T')\) à la courbe \((C_f)\) au point d’abscisse 2.

    \item Construire les droites (D), \((T')\) et la courbe \((C_f)\) dans le repère \((O; \vec{i}; \vec{j})\).

    \item
    \begin{enumerate}[tight]
        \item Montrer que \(f\) admet une fonction réciproque \(f^{-1}\) définie sur un intervalle \(J\) à déterminer.
        \item Montrer que \(f^{-1}\) est dérivable en 0, puis montrer que :
        ~\(
        (f^{-1})'(0) = \sqrt{3}.
        \)~
        \item Déterminer l’équation de la tangente \((T'')\) à la courbe \((C_{f^{-1}})\) au point d’abscisse 0.
        \item Construire, dans le même repère \((O; \vec{i}; \vec{j})\), la courbe \((C_{f^{-1}})\). (Utiliser deux couleurs différentes).
    \end{enumerate}
\end{enumerate}
}

% Exercise 2 (originally 2)
\printexo{2}{}{
On considère la suite numérique \((u_n)\) définie par :
~\(
u_0 = 5 \text{ et } u_{n+1} = \frac{7u_n+4}{2u_n+5} \text{ pour tout } n \in \mathbb{N}.
\)~
\begin{enumerate}[tight]
    \item
    \begin{enumerate}[tight]
        \item Montrer que : \(\forall n \in \mathbb{N} : u_n \geq 2\).
        \item Montrer que : \(\forall n \in \mathbb{N} : u_{n+1} - u_n = \frac{-2(u_n-2)(u_n+1)}{2u_n+5}\).
        \item En déduire que la suite \((u_n)\) est décroissante puis que : \(\forall n \in \mathbb{N} : 2 \leq u_n \leq 5\).
        \item En déduire que la suite \((u_n)\) est convergente.
    \end{enumerate}

    \item
    \begin{enumerate}[tight]
        \item Montrer que : \(\forall n \in \mathbb{N} : |u_{n+1} - 2| \leq \frac{1}{3}(u_n - 2)\).
        \item En déduire que : \(\forall n \in \mathbb{N} : |u_n - 2| \leq 3\left(\frac{1}{3}\right)^n\).
        \item Calculer \(\lim u_n\).
    \end{enumerate}

    \item On pose : \(\forall n \in \mathbb{N} : v_n = \frac{u_n-2}{u_n+1}\).
    \begin{enumerate}[tight]
        \item Montrer que \((v_n)\) est une suite géométrique de raison \(q = \frac{1}{3}\) et déterminer son premier terme.
        \item Calculer \(v_n\) en fonction de \(n\) et en déduire que :
        ~\(
        \forall n \in \mathbb{N} : u_n = \frac{2 + \frac{1}{2}(\frac{1}{3})^n}{1 - \frac{1}{2}(\frac{1}{3})^n}.
        \)~
        \item Retrouver de nouveau : \(\lim u_n\).
    \end{enumerate}

    \item On considère la somme :
    ~\(
    S_n = \sum_{i=0}^n v_i = v_0 + v_1 + v_2 + \cdots + v_n.
    \)~
    Montrer que :
    ~\(
    S_n = \frac{3}{4} - \frac{1}{4}\left(\frac{1}{3}\right)^n.
    \)~

    \item Calculer en fonction de \(n\), le produit :
    ~\(
    P_n = \prod_{i=1}^n v_i = v_1 \times v_2 \times v_3 \times \cdots \times v_n.
    \)~

    \item On pose : \(\forall n \in \mathbb{N} : w_n = \sqrt{7 + u_n}\), calculer \(\lim_{n \to \infty} w_n\).
\end{enumerate}
}





% Bottom message
\vspace*{-0.5cm}
\begin{center}
  \normalsize{%
    \RL{\arabicfont
    ﴿وَمَا خَلَقْنَا ٱلسَّمَـٰوَٰتِ وَٱلْأَرْضَ وَمَا بَيْنَهُمَآ إِلَّا بِٱلْحَقِّ ۗ وَإِنَّ ٱلسَّاعَةَ لَـَٔاتِيَةٌ ۖ فَٱصْفَحِ ٱلصَّفْحَ ٱلْجَمِيلَ﴾ (الحجر 85)
    }%
  }%
\end{center}

\end{document}


    

Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Control 03, S01 (PDF)

if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع

Buy me a coffee — إشتر لي قهوة

PayPal.me • عبر بايبال

Or bank transfer • أو حوالة بنكية

Titulaire : RADOUAN MOSAID
RIB : 230 090 6501953211022000 65
IBAN : MA64 2300 9065 0195 3211 0220 0065
BIC / SWIFT : CIHMMAMC