Devoir 02 - S01
📅 December 08, 2025 | 👁️ Views: 1
📚 Courses Covered in This Exam:
\documentclass[a4paper,12pt]{article}
% This file now contains only packages and settings
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{tcolorbox,varwidth}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{fancyhdr}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
% French language support
\usepackage[french]{babel}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 02 - S01, Par PR. H. AFARIAD}
\def\schoolname{\textbf{Lycée :} Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% --- Exam-specific definitions ---
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
% Document spacing
\setstretch{1.2}
% Math display style
\everymath{\displaystyle}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-2pt}, % reduce space before
after=\vspace{-2pt} % reduce space after
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% Exercise Theme 1: TikZ shadow title
\newcommand{\exothemeone}[1]{%
\par\vspace{0pt}\noindent\leavevmode
\begin{tikzpicture}[baseline=(text.base)]
\node[] (text) at (0,0) {\textbf{\#1}};
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
\draw[fill=white] (text.south west) rectangle (text.north east);
\node[] at (text) {\textbf{\#1}};
\end{tikzpicture}\\[0.2cm]
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\exothemeone{\fulltitle}%
\noindent #3%
\vspace{0.2cm}%
}
% --- Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
\arrayrulecolor{lightgray}
\begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
\textbf{\classname} & \centering \textbf{\examtitle}
& \ddate \\
\wsite & \centering \large\textbf{\secondtitle}
&\hfill
\begin{tabular}{|c}
\hline
\textbf{~~\professor}
\end{tabular}\\
\hline
\end{tabular}
\arrayrulecolor{black}
}
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
\printheadnine
}%
\pagestyle{fancy}
\begin{document}
\vspace*{-0.75cm}
% Exercise 1 (originally 1)
\printexo{1}{: (5.5 pts)}{
On considère la suite réelle \((u_n)\) définie par :
~$
u_0 = \frac{1}{2} \quad \text{et} \quad (\forall n \in \mathbb{N}) \quad u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$~
\begin{enumerate}[tight, label=\arabic*)]
\item
\begin{enumerate}[tight, label=(\alph*)]
\item Montrer que : \((\forall n \in \mathbb{N}) : 0 < u_n < 1\). \dotfill (1 pt)
\item Montrer que \((u_n)\) est croissante. \dotfill (1 pt)
\end{enumerate}
\item Soit \((v_n)_{n \in \mathbb{N}}\) la suite réelle définie par : \(v_n = \frac{u_n - 1}{u_n + 1}\).
\begin{enumerate}[tight, label=(\alph*)]
\item Montrer que \((v_n)\) est une suite géométrique de raison \(q = \frac{1}{3}\). \dotfill (1 pt)
\item Montrer que : \((\forall n \in \mathbb{N}) : u_n = \frac{1 - \left( \frac{1}{3} \right)^{n+1}}{1 + \left( \frac{1}{3} \right)^{n+1}}\).\\
En déduire la limite de la suite \((u_n)\). \dotfill (1 pt)
\end{enumerate}
\item On pose pour tout \(n \in \mathbb{N} : S_n = v_0 + v_1 + \cdots + v_n\) et \(T_n = \sin(\pi S_n)\).
\begin{enumerate}[tight, label=(\alph*)]
\item Montrer que : \((\forall n \in \mathbb{N}) : S_n = -\frac{1}{2} \left( 1 - \frac{1}{3^{n+1}} \right)\). \dotfill (1 pt)
\item En déduire la limite de la suite \((T_n)\). \dotfill (0,5 pt)
\end{enumerate}
\end{enumerate}
}
% Exercise 2 (originally 2)
\printexo{2}{: (11.75 pts)}{
Soit \(f\) la fonction numérique définie par : \(f(x) = 4x\sqrt{x} - 3x^2\). \\
Soit \((C_f)\) sa courbe représentative dans un repère orthonormé \((O; \vec{i}, \vec{j})\).
\begin{enumerate}[tight, label=\arabic*)]
\item Déterminer \(D_f\). \dotfill (0,25 pt)
\item Étudier la dérivabilité à droite en 0 de la fonction \(f\) puis interpréter le résultat obtenu. \dotfill (1 pt)
\item Calculer \(\lim\limits_{x \to +\infty} f(x)\) et \(\lim\limits_{x \to +\infty} \frac{f(x)}{x}\) \\ puis déduire la nature de la branche infinie de
\((C_f)\) au voisinage de \(+\infty\). \dotfill (1,25 points)
\item Montrer que : \((\forall x \in \mathbb{R}^*_+) : f'(x) = 6\sqrt{x} \left( 1 - \sqrt{x} \right)\). \dotfill (1 pt)
\item Dresser le tableau de variations de \(f\). \dotfill (1 pt)
\item
\begin{enumerate}[tight, label=(\alph*)]
\item Vérifier que : \((\forall x \in \mathbb{R}_+) : f(x) - x = x \left( \sqrt{x} - 1 \right) \left( 1 - 3\sqrt{x} \right)\). \dotfill (0,5 pt)
\item En déduire la position relative de \((C_f)\) et la droite d'équation \(y = x\). \dotfill (1 pt)
\end{enumerate}
\item Montrer que : \((\forall x \in \mathbb{R}^*_+) : f''(x) = \frac{3\left( 1 - 2\sqrt{x} \right)}{\sqrt{x}}\) puis étudier la concavité de \((C_f)\). \dotfill (1,5 points)
\item Déterminer les points d'intersection de \((C_f)\) avec l'axe des abscisses. \dotfill (1 pt)
\item Construire \((C_f)\). \dotfill (1 pt)
\item Soit \((u_n)\) la suite numérique définie par : \(u_0 = \frac{1}{2}\) et \(u_{n+1} = f(u_n)\) pour tout \(n \in \mathbb{N}\).
\begin{enumerate}[tight, label=(\alph*)]
\item Montrer que : \((\forall n \in \mathbb{N}) : \frac{1}{9} \leq u_n \leq 1\). \dotfill (0,75 pt)
\item Montrer que \((u_n)\) est croissante (on pourra utiliser le résultat de 6). \dotfill (0,5 pt)
\item En déduire que la suite \((u_n)\) est convergente et calculer sa limite. \dotfill (1 pt)
\end{enumerate}
\end{enumerate}
}
% Exercise 3 (originally 3)
\printexo{3}{: (2.75 pts)}{
Soit \(h\) la fonction définie sur \(I = [0; +\infty[\) par : \(h(x) = \frac{2x+1}{(x+1)^3}\).\\
\begin{enumerate}[tight, label=\arabic*)]
\item Vérifier que : \((\forall x \in I) : h(x) = u'(x) u(x)\) où : \(u : x \mapsto \frac{2x+1}{x+1}\). \dotfill (0,75 pt)
\item En déduire les fonctions primitives de \(h\) sur \(I\). \dotfill (1 pt)
\item Vérifier que : \((\forall x \in I) : h(x) = \frac{2}{(x+1)^2} - \frac{1}{(x+1)^3}\). \\
En déduire de nouveau les primitives de \(h\) sur \(I\). \dotfill (1 pt)
\end{enumerate}
}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir 02 - S01 (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC