Devoir Surveillé 1 S02 Calcul Trigonométrique E - F
📅 April 23, 2024 | 👁️ Views: 336

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=0.50cm]{geometry}
\usepackage{tabularx}
\usepackage{booktabs}% better tables
\usepackage{ragged2e}%better Centering
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{mathrsfs}%rsfs font , \mathscr{}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{xcolor}
%\usepackage{setspace}
%\usepackage{fancyhdr}
\usepackage[ddmmyyyy]{datetime}
\usepackage{tikz, pgfplots}
\usetikzlibrary{shapes}
\usetikzlibrary{calc}
%\usepackage{draftwatermark}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
%\SetWatermarkText{\mylink}
%\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
%\SetWatermarkLightness{0.95}
%\SetWatermarkScale{0.8}
% Define colors
\definecolor{lightpurple}{RGB}{221,160,221}
\definecolor{darkpurple}{RGB}{148,0,211}
\definecolor{lightblue}{RGB}{173,216,230}
\newcommand{\mylabel}[2][lightblue]{%
\begin{tikzpicture}[baseline=20pt]
\node[draw=#1, fill=#1, text=black, inner sep=2pt,
rounded corners=2pt, font=\tiny, anchor=north] at (0,1) (label) {#2};
\draw[->, thick, #1] (label) -- +(10pt,0);
\end{tikzpicture}%
}
% Define fancy exercise command
\newcommand{\exe}[1]{
\begin{tikzpicture}[baseline=3pt]
\node[ellipse, inner sep=3pt, outer sep=0pt,
fill=lightblue, draw=darkpurple, line width=1.5pt]
at (0,0.2)
{\textcolor{darkpurple}{\textbf{Exercise #1:}}};
\end{tikzpicture}
}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
\end{tikzpicture}
}
%
\newcolumntype{C}{>{\Centering\arraybackslash}X}
%\setstretch{1.10}
\everymath{\displaystyle}
\begin{document}
\thispagestyle{empty}
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
Lycee Taghzirt\textbf{/}Prof MOSAID &
2022-2023\textbf{/Devoir 1 S02}\ccc{A}&
TCSF\textbf{/}2h\\
\bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(4.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
&Soit le polynome \(P(x)=x^3+2x^2-5x-6\)\\
\phantom{\(\times 33\)}0.5&\mylabel[green]{1} Montrer que \(P(x)\) est divisible par \(x-2\)\\
3&\mylabel[green]{2} Ecrir \(P(x)\) sous forme de produit de binomes\\
1&\mylabel[green]{3} Résoudre \(x\in \mathbb{R}\quad P(x) < 0\)\\
\end{tabular}
\\
\begin{tikzpicture}[scale=1.5,overlay ]
\begin{scope}[shift={(10,0.2)}]
\coordinate (A) at (0,1) ;
\coordinate (B) at (1,1) ;
\coordinate (D) at (1.5,-0.4) ;
\coordinate (C) at (0,0) ;
\draw[thick] (A) -- (B) -- (D) -- (C) --cycle;
\draw[thin] (C) --(B);
\draw[thick, red] ($(A)!0.15!(B)$) -- ++(-90:0.15) -- ++(180:0.15);
\node[thick, font=\tiny, rotate=-30] at ($(A)!0.5!(B)$) {|};
\node[thick, font=\tiny, rotate=45] at ($(A)!0.5!(C)$) {|};
\node[thick, font=\tiny, rotate=-50] at ($(B)!0.45!(D)$) {||};
\node[thick, font=\tiny, rotate=-30] at ($(C)!0.45!(D)$) {||};
\node[thick, font=\tiny, rotate=30] at ($(B)!0.50!(C)$) {||};
\begin{scriptsize}
\node[above ] at (A) {$A$};
\node[above ] at (B) {$B$};
\node[ right] at (D) {$D$};
\node[ below] at (C) {$C$};
\end{scriptsize}
\end{scope}
\end{tikzpicture}\\
\exe{2}(8.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
\phantom{1.}\(1\times4\)&\mylabel[green]{1} Soit la figure si contre, donner les mesures :
\((\overline{\overrightarrow{BA},\overrightarrow{BC}})\);
\((\overline{\overrightarrow{CA},\overrightarrow{CB}})\);
\((\overline{\overrightarrow{DC},\overrightarrow{DB}})\);
\((\overline{\overrightarrow{AB},\overrightarrow{AC}})\)\\
1& \mylabel[green]{2} Vérifier que \(\frac{45\pi}{4}\) et \(\frac{-3\pi}{4}\)
Sont des abscisses curvilignes du même point.\\
&\hspace*{0.5cm} Puis le placer sur le cercle trigonométrique\\
2& \mylabel[green]{3} Simplifier:
\(A= 2\cos x +3\cos(\pi+x) +6\sin(\frac{\pi}{2}-x)\)\\
1.5&\mylabel[green]{4} Calculer:
\(B= \sin^2\frac{\pi}{12} + \sin^2\frac{3\pi}{12}+\sin^2\frac{5\pi}{12}\)\\
\end{tabular}
\\
\exe{3}(7pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
\phantom{.5}\(2 \times 2\)&\mylabel[green]{1} Résoudre \(x\in \mathbb{R} \quad \sin(3x- \frac{2\pi}{5}) = 0 \quad\)
et \(\quad x\in [0,2\pi]\quad \cos 3x+\cos 7x = 0\)\\
3&\mylabel[green]{2} Résoudre \(x\in [0,2\pi]\quad \cos x\cdot\sin x < 0\)\\
\end{tabular}
\mylink \hfill \mylink\\
\\[2cm]
%===========================================================================
%===========================================================================
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
Lycee Taghzirt\textbf{/}Prof MOSAID &
2022-2023\textbf{/Devoir 1 S02}\ccc{B}&
TCSF\textbf{/}2h\\
\bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(2pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
1+1&Résoudre dans \(\mathbb{R}\): \(x^2-3x+6=0\quad\) ; \(\quad 3x^2+4x+5<0\)\\
\end{tabular}
\\
\exe{2}(9pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
\phantom{1+}1&\mylabel[green]{1} Placer le point \(A\left(\frac{197\pi}{4}\right)\),
sur le cercle trigonométrique\\
1& \mylabel[green]{2} Construir un triangle réctangle isocèle \(ABC\) tel que
\(\overline{(\overrightarrow{AB},\overrightarrow{AC})}\equiv \frac{\pi}{2}[2\pi]\)\\
2& \mylabel[green]{3} Sachant \phantom{aa} que \phantom{aa} \(\sin \frac{7\pi}{8} = \frac{\sqrt{2-\sqrt2}}{2}\).
Determiner \(\cos \frac{7\pi}{8}\) et \(\sin \frac{\pi}{8}\)\\
3&\mylabel[green]{4} Simplifer
\(A=\sin\left(15\pi-x\right)\cdot\cos\left(\frac{5\pi}{2}-x\right)-\sin\left(\frac{5\pi}{2}-x\right)\cdot\cos\left(3\pi-x\right)\)\\
2& \mylabel[green]{5} Calculer
\(B=\cos^2 \frac{\pi}{8}+\cos^2 \frac{3\pi}{8}+\cos^2 \frac{5\pi}{8}+\cos^2 \frac{7\pi}{8}\)\\
\end{tabular}
\\
\exe{2}(9pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
2+2&\mylabel[green]{1} Résoudre \(x\in [0,2\pi]\quad 2\sin x+\sqrt3 = 0\) et \(x\in [0,2\pi]\quad 2\cos x-\sqrt3 = 0\)\\
3&\mylabel[green]{2} Résoudre \(x\in [0,2\pi]\quad (2\sin x+\sqrt3)(2\cos x-\sqrt3) \le 0\)\\
2&\mylabel[green]{3}Résoudre dans \(\mathbb{R}\quad\) \(\begin{cases}
\cos x = \cos y\\
3x+2y=\pi
\end{cases}\)
\end{tabular}
\mylink \hfill \mylink\\
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir Surveillé 1 S02 Calcul Trigonométrique E - F (PDF)