Devoir 03, S01
📅 January 03, 2026 | 👁️ Views: 35
📚 Courses Covered in This Exam:
\documentclass[a4paper,12pt]{article}
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage[most]{tcolorbox}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
\usepackage{fancyhdr}
% French language support
\usepackage[french]{babel}
% Bottom message in Arabic requires bidi package
\usepackage{bidi}
\newfontfamily\arabicfont[Script=Arabic,Scale=1.1]{Amiri}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 03 - S01, Par Prof Saissi Rachid}
\def\schoolname{Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
\newcommand{\circled}[1]{%
\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=1pt, font=\bf] (char) {\#1};}%
}
% --- Margin offsets for note placement ---
\def\rnotemargin{-1.5} % distance from right edge of text block
\def\lnotemargin{0.5} % distance from left edge of text block
% --- Note number placed 1cm from page edge (right margin) ---
\newcommand{\rnote}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.east)+(\rnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% --- Note number placed 1cm from page edge (left margin) ---
\newcommand{\note}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.west)+(\lnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% Document spacing
\setstretch{1.3}
% Math display style
\everymath{\displaystyle}
%\mathversion{bold}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\newcommand{\dfp}[1]{\dotfill (\bf{\#1 pt})}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-2pt}, % reduce space before
after=\vspace{-2pt} % reduce space after
}
\newcommand{\VMargin}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=1pt]
([xshift=#1]current page.north west) --
([xshift=#1]current page.south west);
\end{tikzpicture}%
}
\newcommand{\VMarginRight}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=0.6pt]
([xshift=-#1]current page.north east) --
([xshift=-#1]current page.south east);
\end{tikzpicture}%
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% --- Theme 11: Chevron arrow banner (as in scanned sheet) ---
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
\newtcolorbox{exothemeeleven}[2][]{%
enhanced,
breakable,
width=\linewidth,
colback=white,
colframe=white,
boxrule=0pt,
left=0pt, right=0pt, top=5pt, bottom=0pt,
boxsep=0pt,
before skip=5pt, after skip=5pt,
interior style={fill=none, top color=white, bottom color=white},
title={\#2},
boxed title style={empty, boxrule=0pt, top=0pt, bottom=0pt},
attach boxed title to top left={yshift=0pt},
varwidth boxed title=0.9\linewidth,
before upper={\parskip=4pt},
overlay unbroken={
% Chevron banner background
\begin{scope}[shift={(frame.north west)}]
\fill[bannerblue] (0,0) rectangle (\linewidth,0.8);
\fill[arrowblue] (-0.4,0) -- (0.4,0.4) -- (-0.4,0.8) -- (0,0.4) -- cycle;
\node[anchor=west, font=\bfseries] at (0.4,0.4)
{\tcbtitletext};
\end{scope}
},
#1
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\begin{exothemeeleven}{\fulltitle}#3\end{exothemeeleven}%
\vspace{0.2cm}%
}
% --- Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
\arrayrulecolor{lightgray}
\begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
\textbf{\classname} & \centering \textbf{\examtitle}
& \ddate \\
\wsite & \centering \large\textbf{\secondtitle}
&\hfill
\begin{tabular}{|c}
\hline
\textbf{~~\professor}
\end{tabular}\\
\hline
\end{tabular}
\arrayrulecolor{black}
}
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
\printheadnine
}%
\pagestyle{fancy}
\begin{document}
\vspace*{-0.75cm}
% Exercise 1 (originally 1)
\printexo{1}{}{
\begin{enumerate}
\item Vérifier que : \((x-1)(3-x)=-x^2+4x-3\)
\item
\begin{enumerate}[label=\alph*)]
\item En déduire les solutions dans \(\mathbb{R}\) de l’équation : \((\ln x)^2-4\ln x+3=0\)
\item Résoudre dans \(\mathbb{R}\) l’inéquation : \((\ln x)^2+3\leq 4\ln x\)
\end{enumerate}
\item Calculer :
~\(A = \ln \left( \sqrt{2026} - \sqrt{2025} \right)^{2026} + \ln \left( \sqrt{2026} + \sqrt{2025} \right)^{2026}\)~
\end{enumerate}
}
% Exercise 2 (originally 2)
\printexo{2}{}{
\noindent\textbf{I.}
Soit \(h\) la fonction définie sur \(]0; +\infty [\) par :
~\(h(x) = x\ln x - x + 1\)~
\begin{enumerate}
\item
\begin{enumerate}[label=\alph*)]
\item Montrer que \(h'(x) = \ln x\) pour tout \(x\) de \(]0; +\infty [\)
\item Montrer que \(h\) est décroissante sur \(]0; 1]\) et croissante sur \([1; +\infty [\)
\end{enumerate}
\item Calculer \(h(1)\) et en déduire que \(h(x) \geq 0\) pour tout \(x\) de \(]0; +\infty [\)
\end{enumerate}
\noindent\textbf{II.}
Soit \(g\) la fonction définie sur \(]0; +\infty [\) par :
~\(g(x) = x(\ln x)^2 + 2x\ln x + 1\)~
\begin{enumerate}
\item Montrer que :
~\(g(x) = h(x) + x \left[ \left( \ln x + \frac{1}{2} \right)^2 + \frac{3}{4} \right]\)~
pour tout \(x\) de \(]0; +\infty [\)
\item En déduire que : \(g(x) > 0\) pour tout \(x\) de \(]0; +\infty [\)
\end{enumerate}
\noindent\textbf{III.}
Soit \(f\) la fonction définie sur \(]0; +\infty [\) par :
~\(f(x) = x(\ln x)^2 + \ln x + 1\)~
\begin{enumerate}
\item Calculer \(\lim\limits_{x \to +\infty} f(x)\) puis déduire la nature de la branche infinie de \((C)\) au voisinage de \(+\infty\)
\item
\begin{enumerate}[label=\alph*)]
\item Vérifier que : \(x(\ln x)^2 = 4 \left( \sqrt{x} \ln \sqrt{x} \right)^2\) pour tout \(x\) de \(]0; +\infty [\) \\et en déduire que \(\lim\limits_{x \to 0^+} x(\ln x)^2 = 0\)
\item Calculer \(\lim\limits_{x \to 0^+} f(x)\) puis interpréter géométriquement le résultat.
\end{enumerate}
\item
\begin{enumerate}[label=\alph*)]
\item Montrer que : \(f'(x) = \frac{g(x)}{x}\) pour tout \(x\) de \(]0; +\infty [\)
\item En déduire que \(f\) est strictement croissante sur \(]0; +\infty [\)
\item Montrer qu’il existe un réel unique \(\alpha\) de l’intervalle \(\left]\frac{1}{e^2}; \frac{1}{e}\right[\) tel que \(f(\alpha) = 0\)
\end{enumerate}
\item
\begin{enumerate}[label=\alph*)]
\item Montrer que \(y=x\) est une équation de la tangente \((T)\) à la courbe \((C)\) au point \(A(1;1)\)
\item Vérifier que : \(f(x) - x = (\ln x + 1)h(x)\) pour tout \(x\) de \(]0; +\infty [\)
\item En déduire que \((C)\) coupe la tangente \((T)\) en deux points dont on déterminera les coordonnées.
\item Étudier la position relative de la courbe \((C)\) et la droite \((T)\) sur l’intervalle \(\left]\frac{1}{e}; 1\right[\)
\end{enumerate}
\item Tracer la courbe \((C)\) et la droite \((T)\) dans le repère orthonormé \((O; \vec{i}; \vec{j})\) (unité : 2 cm)
(On admettra que la courbe \((C)\) possède un seul point d’inflexion dont l’abscisse est comprise entre \(\frac{1}{e}\) et 1)
\end{enumerate}
\noindent\textbf{IV. }
Soit \((U_n)\) la suite définie par :
~\(U_0 = \frac{1}{2} \quad \text{et} \quad U_{n+1} = f(U_n) \quad \text{pour tout } n \in \mathbb{N}\)~
\begin{enumerate}
\item Montrer que : \(\frac{1}{e} \leq U_n \leq 1\) pour tout \(n \in \mathbb{N}\)
\item Montrer que la suite \((U_n)\) est croissante.
\item Montrer que la suite \((U_n)\) est convergente et déterminer sa limite.
\end{enumerate}
}
% Bottom message
\vspace*{-0.75cm}
\begin{center}
\small{%
\vskip 1pt \hrule height 2pt \vskip 1pt
\RL{\arabicfont
﴿بِسْمِ ٱللَّهِ ٱلرَّحْمَـٰنِ ٱلرَّحِيمِ الٓر ۚ كِتَـٰبٌ أَنزَلْنَـٰهُ إِلَيْكَ لِتُخْرِجَ ٱلنَّاسَ مِنَ ٱلظُّلُمَـٰتِ إِلَى ٱلنُّورِ بِإِذْنِ رَبِّهِمْ إِلَىٰ صِرَٰطِ ٱلْعَزِيزِ ٱلْحَمِيدِ﴾ (إبراهيم 1)
}%
}%
\end{center}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir 03, S01 (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC