Devoir 03, S01
📅 January 14, 2026 | 👁️ Views: 307
📚 Courses Covered in This Exam:
\documentclass[a4paper, 12pt]{exam}
\usepackage[left=1.50cm, right=1.00cm, top=1cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage[most]{tcolorbox}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array, booktabs}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
% French language support
\usepackage[french]{babel}
% Bottom message in Arabic requires bidi package
\usepackage{bidi}
\newfontfamily\arabicfont[Script=Arabic,Scale=1.1]{Amiri}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 01 - S01 (2BAC.PC/SVT) Par Pr. MOHAMED JOUAHRI}
\def\schoolname{Lycée Qualifiant Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Custom labels
\renewcommand{\thequestion}{\Roman{question}}
\renewcommand{\thepartno}{\arabic{partno}}
\renewcommand{\thesubpart}{\alph{subpart}}
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
\newcommand{\circled}[1]{%
\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=1pt, font=\bf] (char) {\#1};}%
}
% --- Margin offsets for note placement ---
\def\rnotemargin{-1.5} % distance from right edge of text block
\def\lnotemargin{0.5} % distance from left edge of text block
% --- Note number placed 1cm from page edge (right margin) ---
\newcommand{\rnote}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.east)+(\rnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% --- Note number placed 1cm from page edge (left margin) ---
\newcommand{\note}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.west)+(\lnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% Document spacing
\setstretch{1.3}
% Math display style
\everymath{\displaystyle}
%\mathversion{bold}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\newcommand{\dfp}[1]{\dotfill (\bf{\#1 pt})}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-2pt}, % reduce space before
after=\vspace{-2pt} % reduce space after
}
\newcommand{\VMargin}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=1pt]
([xshift=#1]current page.north west) --
([xshift=#1]current page.south west);
\end{tikzpicture}%
}
\newcommand{\VMarginRight}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=0.6pt]
([xshift=-#1]current page.north east) --
([xshift=-#1]current page.south east);
\end{tikzpicture}%
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% Exam settings
\pointsinmargin
\pointname{}
\pointformat{\textcolor{red}{\circled{\thepoints}}}
\colorfillwithdottedlines
\definecolor{FillWithDottedLinesColor}{gray}{0.7}
\unframedsolutions
\renewcommand{\solutiontitle}{\noindent\textbf{\textcolor{green!70!black}{Solution}}\enspace}
\SolutionEmphasis{\itshape\small}
\SolutionEmphasis{\color{red}}
% Exercise Theme 1: TikZ shadow title
\newcommand{\exothemeone}[1]{%
\par\vspace{0pt}\noindent\leavevmode
\begin{tikzpicture}[baseline=(text.base)]
\node[] (text) at (0,0) {\textbf{\#1}};
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
\draw[fill=white] (text.south west) rectangle (text.north east);
\node[] at (text) {\textbf{\#1}};
\end{tikzpicture}\\[0.2cm]
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\exothemeone{\fulltitle}%
\noindent #3%
\vspace{0.2cm}%
}
% --- Exam Header Style 5 (fr) ---
\newcommand{\shadowhead}{%
\noindent
\begin{tikzpicture}
\node[
fill=white,
draw=black,
rounded corners=2pt,
inner sep=6pt,
drop shadow,
every shadow/.append style={
fill=black,
opacity=0.7,
shadow xshift=3pt,
shadow yshift=-3pt
}
]{%
\centering
\begin{tabular}{M{0.16\textwidth} M{0.60\textwidth} M{0.16\textwidth}}
\schoolname & \textbf{\examtitle} & \textit{\professor} \\[0.3em]
\academicyear & \secondtitle & \classname
\end{tabular}
};
\end{tikzpicture}
\par
}
\begin{document}
\noindent\shadowhead
% Exercise 1 (originally 1)
\printexo{1}{: ~ (4 points)}{
{
\renewcommand{\thequestion}{\arabic{question}}
\vspace*{-0.5cm}
\begin{questions}
\question[2] Résoudre dans $]0, +\infty[$ :
$(E_1): \ln(x) - 3 = 0$ \quad ;\quad
$(E_2): \ln(x^2 + 8) = \ln(x + 4) + \ln(x)$
\question[2] Déterminer une primitive de chacune des fonctions suivantes :\\
~\(
f_1(x) = \frac{1}{x \ln(x)} \quad ; \quad f_2(x) = \frac{3x^2}{x^3 + 5} + \frac{1}{x}
\)~
\end{questions}
}
}
% Exercise 2 (originally 2)
\printexo{2}{: ~ (18 points)}{
\vspace*{-0.75cm}
\begin{questions}
% ===================== QUESTION 1 =====================
\question
Soit $g$ la fonction numérique définie sur $]0,+\infty[$ par
~\(
g(x)=x-1+\ln(x).
\)~
\begin{parts}
\part[1]
Montrer que
~\(
\lim_{x\to0^+} g(x)=-\infty
\)~
et Calculer
~\(
\lim_{x\to+\infty} g(x).
\)~
\part[1]
Montrer que, pour tout $x\in]0,+\infty[$,
~\(
g'(x)=\frac{x+1}{x}.
\)~
\part[1]
Montrer que $g$ est strictement croissante sur $]0,+\infty[$.
\part[1]
Dresser le tableau de variations de la fonction $g$ sur $]0,+\infty[$.
\part[1]
Calculer $g(1)$ puis montrer que
~\(
g(x)\le 0 \quad \forall x\in]0,1]
\)~
et que
~\(
g(x)\ge 0 \quad \forall x\in[1,+\infty[.
\)~
\end{parts}
% ===================== QUESTION 2 =====================
\question
Considérons la fonction $f$ définie sur $]0,+\infty[$ par
~\(
f(x)=x+\frac12-\ln(x)+\frac12(\ln(x))^2,
\)~\\
et $(C_f)$ sa courbe représentative dans un repère orthonormé $(O,\vec{i},\vec{j})$.
\begin{parts}
\part[1]
Montrer que
~\(
\lim_{x\to0^+} f(x)=+\infty
\)~
puis interpréter graphiquement ce résultat.
\part[1]
Vérifier que, pour tout $x\in\mathbb{R}_+^*$,
~\(
f(x)=x+\frac12+\left(\frac12\ln(x)-1\right)\ln(x),
\)~\\
et montrer que
~\(
\lim_{x\to+\infty} f(x)=+\infty.
\)~
\part[1]
Montrer que
~\(
\lim_{x\to+\infty}\frac{\ln^2(x)}{x}=0
\)~
(on pourra poser $\sqrt{x} = t$). Et que
~\(
\lim_{x\to+\infty}\frac{f(x)}{x}=1.
\)~
\part[1]
Montrer que $(C_f)$ admet, au voisinage de $+\infty$, une branche parabolique\\
de direction asymptotique la droite $(\Delta)$ d’équation $y=x$.
\part[1]
Montrer que, pour tout $x\in]0,+\infty[$,
~\(
f'(x)=\frac{g(x)}{x}.
\)~
\part[1]
Dresser le tableau de variations de la fonction $f$ sur $]0,+\infty[$.
\part[1]
Montrer que, pour tout $x\in]0,+\infty[$,
~\(
f''(x)=\frac{2-\ln(x)}{x}.
\)~
\part[1]
En déduire que $(C_f)$ admet un point d’inflexion et déterminer ses coordonnées.
\part[1]
Vérifier que
\(
\forall x\in\R^*_+\;
f(x)-x=\frac12(\ln(x)-1)^2
\)
et déduire la position relative de $(C_f)$ et $(\Delta)$.
\part[1]
Tracer $(C_f)$ et $(\Delta)$ dans le même repère orthonormé.
\end{parts}
% ===================== QUESTION 3 =====================
\question
On considère la suite $(U_n)$ définie par
~\(
U_0=1, \qquad~\text{et}~\quad U_{n+1}=f(U_n).
\)~
\begin{parts}
\part[1]
Montrer que, pour tout $n\in\mathbb{N}$,
~\(
1\le U_n\le e.
\)~
\part[1]
Montrer que la suite $(U_n)$ est croissante.
\part[1]
En déduire que la suite $(U_n)$ est convergente puis déterminer
~\(
\lim U_n.
\)~
\end{parts}
\end{questions}
\VMargin{1.35cm}
}
% Bottom message
\vspace*{-1cm}
\begin{center}
\normalsize{%
\vskip 2pt \hrule height 3pt \vskip 2pt
\RL{\arabicfont
﴿ٱللَّهُ يَعْلَمُ مَا تَحْمِلُ كُلُّ أُنثَىٰ وَمَا تَغِيضُ ٱلْأَرْحَامُ وَمَا تَزْدَادُ ۖ وَكُلُّ شَىْءٍ عِندَهُۥ بِمِقْدَارٍ﴾ (الرعد 8)
}%
}%
\end{center}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir 03, S01 (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC