Devoir Surveillé 1 S02 Calcul Trigonométrique C - D

📅 April 23, 2024   |   👁️ Views: 249




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=0.50cm]{geometry}
\usepackage{tabularx}
\usepackage{booktabs}% better tables
\usepackage{ragged2e}%better Centering
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{mathrsfs}%rsfs font , \mathscr{}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{xcolor}
%\usepackage{setspace}

%\usepackage{fancyhdr}
\usepackage[ddmmyyyy]{datetime}

\usepackage{tikz, pgfplots}
\usetikzlibrary{shapes}

%\usepackage{draftwatermark}
\usepackage{hyperref}
\hypersetup{
    colorlinks=true,
    linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
%\SetWatermarkText{\mylink}
%\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
%\SetWatermarkLightness{0.95}
%\SetWatermarkScale{0.8}

% Define colors
\definecolor{lightpurple}{RGB}{221,160,221}
\definecolor{darkpurple}{RGB}{148,0,211}
\definecolor{lightblue}{RGB}{173,216,230}

\newcommand{\mylabel}[2][lightblue]{%
    \begin{tikzpicture}[baseline=20pt]
        \node[draw=#1, fill=#1, text=black, inner sep=2pt,
          rounded corners=2pt, font=\tiny, anchor=north] at (0,1) (label) {#2};
        \draw[->, thick, #1] (label) -- +(10pt,0);
    \end{tikzpicture}%
}

% Define fancy exercise command
\newcommand{\exe}[1]{
    \begin{tikzpicture}[baseline=3pt]
        \node[ellipse, inner sep=3pt, outer sep=0pt,
          fill=lightblue, draw=darkpurple, line width=1.5pt]
    at (0,0.2)
        {\textcolor{darkpurple}{\textbf{Exercise #1:}}};
    \end{tikzpicture}
}


\newcommand{\ccc}[1]{
    \begin{tikzpicture}[overlay, remember picture]
        \node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
    \end{tikzpicture}
}


%
\newcolumntype{C}{>{\Centering\arraybackslash}X}

%\setstretch{1.10}
\everymath{\displaystyle}

\begin{document}
\thispagestyle{empty}
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
    Lycee Taghzirt\textbf{/}Prof MOSAID &
    2022-2023\textbf{/Devoir 1 S02}\ccc{A}&
    TCSF\textbf{/}2h\\
    \bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(4.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    &Soit le polynome \(P(x)=x^3-2x^2-5x+6\)\\
    \phantom{\(\times 33\)}0.5&\mylabel[green]{1} Montrer que \(P(x)\) est divisible par \(x-1\)\\
    3&\mylabel[green]{2} Ecrir \(P(x)\) sous forme de produit de binomes\\
    1&\mylabel[green]{3} Résoudre \(x\in \mathbb{R}\quad P(x) < 0\)\\
\end{tabular}
\\
\exe{2}(11.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    \(1.5\times3\)&\mylabel[green]{1.a} Placer les points \(A\left(\frac{-23\pi}{3}\right)\),
    \(B\left(\frac{25\pi}{2}\right)\) et \(C\left(\frac{10\pi}{3}\right)\) sur
        le cercle trigonométrique\\
    2& \mylabel[green]{1.b}  Determiner les mesures
        \phantom{aa} principales \phantom{aa} des \phantom{aa} angles
    \(\left(\widehat{\overrightarrow{OI},\overrightarrow{OA}}\right)\) et
    \(\left(\widehat{\overrightarrow{OB},\overrightarrow{OC}}\right)\)\\
    1& \mylabel[green]{2.a} Sachant  \phantom{aa} que \phantom{aa}  \(\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt2}}{2}\).
        Determiner \(\sin \frac{\pi}{8}\)\\
    2& \mylabel[green]{2.b} En déduir : \(\sin \frac{7\pi}{8}\) et \(\sin \frac{3\pi}{8}\)\\
    2& \mylabel[green]{3} Simplifier puis calculer:
    \(A= \cos \frac{\pi}{5} +\cos \frac{2\pi}{5} +\cos \frac{3\pi}{5} +\cos \frac{4\pi}{5}\)\\
\end{tabular}
\\
\exe{3}(4pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    \(1.5 \times 2\)&\mylabel[green]{1} Résoudre \(x\in [0,2\pi]\quad 2\sin x-1 = 0\) et \(x\in [0,2\pi]\quad 2\cos x+\sqrt3 = 0\)\\
    1&\mylabel[green]{2} Résoudre \(x\in [0,2\pi]\quad (2\sin x-1)(2\cos x+\sqrt3) > 0\)\\
\end{tabular}
\mylink \hfill \mylink\\
\\[2cm]
%===========================================================================
%===========================================================================
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
    Lycee Taghzirt\textbf{/}Prof MOSAID &
    2022-2023\textbf{/Devoir 1 S02}\ccc{B}&
    TCSF\textbf{/}2h\\
    \bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(4.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    &Soit le polynome \(P(x)=-2x^3-x^2+8x+4\).\\
    \phantom{\(\times 33\)}0.5&
        \mylabel[green]{1} Vérifiez que \(-2\) est une racine du polynome \(P(x)\)\\
    3&\mylabel[green]{2} Ecrir \(P(x)\) sous forme de produit de binomes\\
    1&\mylabel[green]{3} Résoudre \(x\in \mathbb{R}\quad P(x) \ge 0\)\\
\end{tabular}
\\
\exe{2}(11.5pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    \(1\)&\mylabel[green]{1} Placer le point \(A\left(\frac{-121\pi}{3}\right)\),
         sur le cercle trigonométrique\\
    2& \mylabel[green]{2} Sachant  \phantom{aa} que \phantom{aa}  \(\cos \frac{\pi}{8} = \frac{\sqrt{2+\sqrt2}}{2}\).
        Determiner \(\cos \frac{-\pi}{8}\) et \(\sin \frac{-\pi}{8}\)\\
        &\mylabel[green]{3} Soient
        \(A(x)=\sin\left(\frac{17\pi}{2}+x\right)\cdot\tan(\pi+x)+\cos\left(\frac{\pi}{2}-x)\cdot\tan\left(\frac{\pi}{2}+x\right)\)\\
        & \phantom{\mylabel[green]{3} Soient} \(B(x)=\tan\left(\frac{13\pi}{2}-x\right)\cdot\sin(\pi-x)+\sin\left(\frac{\pi}{2}+x\right)\cdot\tan(13\pi+x)\)\\
        4 & \mylabel[lightblue]{3.1} Montrer que \(A(x)=\sin x-\cos x \quad\) et \(\quad B(x)=\sin x +\cos x\)\\
        1 & \mylabel[lightblue]{3.2} Montrer que \(A(x)\times B(x)=1-2\cos^2 x\)\\
        \phantom{\(\times 33\)}1.5& \mylabel[lightblue]{3.3} Calculer \(\cos x\)
        sachant que \(A(x)=\frac{\sqrt3+1}{2}\) et \(B(x)=\frac{\sqrt3-1}{2}\)
        et \(x\in ]\frac{\pi}{2},\pi]\)\\
        2& \mylabel[lightblue]{3.4} En déduir \(\sin x\) et \(\tan x\)
\end{tabular}
\\
\exe{2}(4pts)\\
\noindent
\begin{tabular}{@{}>{\hfill}r|p{0.96\textwidth}@{}}
    \(1.5 \times 2\)&\mylabel[green]{1} Résoudre \(x\in [0,2\pi]\quad 2\sin x+1 = 0\) et \(x\in [0,2\pi]\quad 2\cos x+\sqrt2 = 0\)\\
    1&\mylabel[green]{2} Résoudre \(x\in [0,2\pi]\quad (2\sin x+1)(2\cos x+\sqrt2) \le 0\)\\
\end{tabular}
\mylink \hfill \mylink\\

\end{document}




Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir Surveillé 1 S02 Calcul Trigonométrique C - D (PDF)