Devoir Surveillé 1 S02 Calcul Trigonométrique A - B

📅 April 20, 2024   |   👁️ Views: 371




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=0.50cm]{geometry}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{mathrsfs}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{xcolor}
%\usepackage{setspace}

%\usepackage{fancyhdr}
\usepackage[ddmmyyyy]{datetime}

\usepackage{tikz}
\usetikzlibrary{shapes}

%\usepackage{draftwatermark}
\usepackage{hyperref}
\hypersetup{
    colorlinks=true,
    linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
%\SetWatermarkText{\mylink}
%\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
%\SetWatermarkLightness{0.95}
%\SetWatermarkScale{0.8}

% Define colors
\definecolor{lightpurple}{RGB}{221,160,221}
\definecolor{darkpurple}{RGB}{148,0,211}
\definecolor{lightblue}{RGB}{173,216,230}

\newcommand{\mylabel}[2][lightblue]{%
    \begin{tikzpicture}[baseline=20pt]
        \node[draw=#1, fill=#1, text=black, inner sep=2pt,
    rounded corners=2pt, font=\tiny, anchor=north] at (0,1) (label) {#2}; % Adjust the y-coordinate here
        \draw[->, thick, #1] (label) -- +(10pt,0);
    \end{tikzpicture}%
}

% Define fancy exercise command
\newcommand{\exe}[1]{
    \begin{tikzpicture}[baseline=3pt]
        \node[ellipse, inner sep=3pt, outer sep=0pt, fill=lightblue, draw=darkpurple, line width=1.5pt]
    at (0,0.2)
        {\textcolor{darkpurple}{\textbf{Exercise #1:}}};
    \end{tikzpicture}
}

\newcommand{\ccc}[1]{
    \begin{tikzpicture}[overlay, remember picture]
        \node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
    \end{tikzpicture}
}

%
\newcolumntype{X}{>{\centering\arraybackslash}p}
\newcolumntype{C}{>{\centering\arraybackslash}X}

%\setstretch{1.10}
\everymath{\displaystyle}

\begin{document}
\thispagestyle{empty}
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
    Lycee Taghzirt\textbf{/}Prof MOSAID &
    2022-2023\textbf{/Devoir 1 S02}\ccc{A}&
    TCSF  \textbf{/}2h\\
    \bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(4pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.98\textwidth}}
    4& \mylabel[green]{1} Résoudre dans \(\mathbb{R}:\) \(\quad x^2+6x-7 \le 0\quad \) ; \(\quad x^2-3x+2=0\quad\) et dans \(\quad \mathbb{R}^2: \quad \begin{cases}
        2x+3y=3\\
        x+2y=1
\end{cases}\)
\end{tabular}
\\
\\
\exe{2} (6.5pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.96\textwidth}}
    2& \mylabel[green]{1} Placer le point \(A\left(\frac{27\pi}{4}\right)\) sur le cercle trigonométrique \\
    1.5& \mylabel[green]{2} Sachant que \(\frac{3\pi}{2}<x<2\pi\) et \(\cos x=\frac{3}{7}\) Calculer \(\sin x\)\\
    1.5& \mylabel[green]{3} Calculer \hspace*{0.5cm} \(\cos \frac{87\pi}{4}\)\\
    1.5& \mylabel[green]{4} Calculer: \hspace*{0.5cm} \(A = \cos \frac{4\pi}{19} +\cos \frac{5\pi}{19} + \cos \frac{14\pi}{19} + \cos \frac{15\pi}{19}   \)
\end{tabular}
\\
\exe{3}(9.5pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.96\textwidth}}
    2& \mylabel[green]{1} Résoudre dans \(\mathbb{R}\): \( \tan\left(3x- \frac{\pi}{4}\right)+\sqrt3=0\)\\
    3& \mylabel[green]{2.a} Résoudre \(x\in ]-\pi,\pi]\quad 2\cos x -1=0 \qquad\) et \(\qquad x\in ]-\pi,\pi]\quad \sqrt2\sin x -1=0\)\\
    3& \mylabel[green]{2.b} Résoudre \(x\in ]-\pi,\pi]\quad 2\cos x -1\ge0 \qquad\) et \(\qquad x\in ]-\pi,\pi]\quad \sqrt2\sin x -1\ge0\)\\
    1.5& \mylabel[green]{2.c} En déduir les solutions de l'inéquation: \(\qquad x\in ]-\pi,\pi]\quad \frac{2\cos x -1}{\sqrt2\sin x -1} \ge0\)\\
    %3&\mylabel[green]{3} Résoudre \(\qquad x\in ]-\pi,\pi]\quad 2\sin^2(7\pi+x)-3\sqrt3\cos\left(\frac{9\pi}{2}-x\right)+3=0\)
\end{tabular}
\mylink \hfill \mylink\\
\\[2cm]
%==================================================
%==================================================
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
    Lycee Taghzirt\textbf{/}Prof MOSAID &
    2022-2023\textbf{/Devoir 1 S02}\ccc{B}&
    TCSF  \textbf{/}2h\\
    \bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{1}(4pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.98\textwidth}}
    4& \mylabel[green]{1} Résoudre dans \(\mathbb{R}:\) \(\quad 3x^2-2x-8 \le 0 \) ; \(\quad -x^2+3x-2=0\quad\) et dans \(\quad \mathbb{R}^2:  \begin{cases}
        2x-3y=1\\
        4x+5y=-2
\end{cases}\)
\end{tabular}
\exe{2} (6.5pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.96\textwidth}}
    2& \mylabel[green]{1} Placer le point \(A\left(\frac{47\pi}{3}\right)\) sur le cercle trigonométrique \\
    1.5& \mylabel[green]{2} Sachant que \(\frac{\pi}{2}<x<\pi\) et \(\sin x=\frac{3}{7}\) Calculer \(\cos x\)\\
    1.5& \mylabel[green]{3} Calculer \hspace*{0.5cm} \(\sin \frac{95\pi}{3}\)\\
    1.5& \mylabel[green]{4} Simplifier: \hspace*{0.5cm} \(A = \cos\left(x-\frac{97\pi}{2}\right) +\sin\left(x+\frac{95\pi}{2}\right) +\cos(103\pi-x) + \sin(203\pi-x) \)
\end{tabular}
\\
\exe{3}(9.5pts)\\
\noindent
\begin{tabular}{>{\hfill}p{0.04\textwidth}|p{0.96\textwidth}}
    2& \mylabel[green]{1} Résoudre: \(x\in[-\pi,3\pi] \qquad 2\sin\left(x\right)+\sqrt2=0\)\\
    %3& \mylabel[green]{2} Résoudre \(x\in ]-\pi,\pi]\quad 4\sin^2 x +2\left(1-\sqrt2\right)\sin x -\sqrt2=0\)\\
  3&\mylabel[green]{2.a} Résoudre \(\quad x\in ]-\pi,2\pi]\quad 2\cos x +\sqrt3\le0\quad\) et \(\quad x\in ]-\pi,2\pi]\quad \sin x \ge \frac{1}{2}\)\\
  3& \mylabel[green]{2.b} Résoudre \(\quad x\in ]-\pi,2\pi] \qquad \left(2\cos x+\sqrt3\right)\left(\sin x -\frac{1}{2}\right)>0\)\\
    1.5& \mylabel[green]{4} Soit \(x \in \mathbb{R}\) tel que \(x\ne \frac{\pi}{2}+k\pi\) et \(k\in\mathbb{Z}\)\\
    & \hspace*{1cm}Montrer que \(\frac{1}{1-\sin x}+ \frac{1}{1-\sin x}-2\tan^2x=2\)
\end{tabular}
\mylink \hfill \mylink\\
\end{document}




Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir Surveillé 1 S02 Calcul Trigonométrique A - B (PDF)