Devoir 03, S01
📅 January 01, 2026 | 👁️ Views: 1
📚 Courses Covered in This Exam:
\documentclass[a4paper, 12pt]{exam}
\usepackage[left=1.75cm, right=1.00cm, top=0.5cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage[most]{tcolorbox}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
% French language support
\usepackage[french]{babel}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Devoir 03 - S01}
\def\schoolname{Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
\newcommand{\circled}[1]{%
\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=1pt, font=\bf] (char) {\#1};}%
}
% --- Margin offsets for note placement ---
\def\rnotemargin{-1.5} % distance from right edge of text block
\def\lnotemargin{0.5} % distance from left edge of text block
% --- Note number placed 1cm from page edge (right margin) ---
\newcommand{\rnote}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.east)+(\rnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% --- Note number placed 1cm from page edge (left margin) ---
\newcommand{\note}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.west)+(\lnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% Document spacing
\setstretch{1.3}
% Math display style
\everymath{\displaystyle}
%\mathversion{bold}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\newcommand{\dfp}[1]{\dotfill (\bf{\#1 pt})}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-2pt}, % reduce space before
after=\vspace{-2pt} % reduce space after
}
\newcommand{\VMargin}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=1pt]
([xshift=#1]current page.north west) --
([xshift=#1]current page.south west);
\end{tikzpicture}%
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% Exam settings
\pointsinmargin
\pointname{}
\pointformat{\textcolor{red}{\circled{\thepoints}}}
\colorfillwithdottedlines
\definecolor{FillWithDottedLinesColor}{gray}{0.7}
\unframedsolutions
\renewcommand{\solutiontitle}{\noindent\textbf{\textcolor{green!70!black}{Solution}}\enspace}
\SolutionEmphasis{\itshape\small}
\SolutionEmphasis{\color{red}}
% Exercise Theme 1: TikZ shadow title
\newcommand{\exothemeone}[1]{%
\par\vspace{0pt}\noindent\leavevmode
\begin{tikzpicture}[baseline=(text.base)]
\node[] (text) at (0,0) {\textbf{\#1}};
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
\draw[fill=white] (text.south west) rectangle (text.north east);
\node[] at (text) {\textbf{\#1}};
\end{tikzpicture}\\[0.2cm]
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\exothemeone{\fulltitle}%
\noindent #3%
\vspace{0.2cm}%
}
% --- Exam Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
\arrayrulecolor{lightgray}
\begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
\textbf{\classname} & \centering \textbf{\examtitle}
& \ddate \\
\wsite & \centering \large\textbf{\secondtitle}
&\hfill
\begin{tabular}{|c}
\hline
\textbf{~~\professor}
\end{tabular}\\
\hline
\end{tabular}
\arrayrulecolor{black}
}
\begin{document}
\noindent\printheadnine
\VMargin{1.7cm}
\vspace*{-0.8cm}
% Exercise 1 (originally 1)
\printexo{1}{}{
\vspace*{-0.75cm}
\begin{questions}
\question[1 ] Montrer que :
~\(
\ln(4) + \ln\left(\frac{2}{7}\right) + 2\ln\left(\sqrt{7}\right) + \ln\left(\frac{e}{8}\right) = 1
\)~
\question[1 ] Résoudre dans \(\mathbb{R}\) l’équation suivante :
~\(
(\mathrm{E}): \ln(x - 1) + \ln(x + 2) = \ln(x + 7)
\)~
\question Résoudre dans \(\mathbb{R}\) l’inéquation suivante :
~\(
(\mathrm{I}): \log_{\frac{1}{2}}(3x - 2) > 2
\)~
\question On considère la fonction \(g\) définie sur l’intervalle \(D = ]2; +\infty[\) par :
~\(
g(x) = \frac{2x^2 - 4x + 7}{x - 1}
\)~
\begin{parts}
\part[0.5 ] Vérifier que \(\forall x \in D, \; g(x) = 2x - 2 + \frac{5}{x - 1}\).
\part[1.5 ] Déterminer \(G\) la fonction primitive de \(g\) sur l’intervalle \(I\) telle que \(G(3) = 5\ln(3)\).
\end{parts}
\end{questions}
}
\vspace*{-0.25cm}
% Exercise 2 (originally 2)
\printexo{2}{}{
\noindent\textbf{Partie I}
On considère la fonction \(g\) définie sur l’intervalle \(]0; +\infty[\) par :
~\(
g(x) = x^2 + 2 - 2\ln(x)
\)~
\begin{questions}
\question[1 ] Calculer \(g'(x)\) puis dresser le tableau de variations de \(g\).
\question[1 ] Calculer \(g(1)\) puis déduire que \(\forall x \in ]0; +\infty[, \; g(x) > 0\).
\end{questions}
\noindent\textbf{Partie II}
Soit \(f\) la fonction définie sur l’intervalle \(]0; +\infty[\) par :
~\(
f(x) = x - 1 + 2\frac{\ln x}{x}
\)~
et \((C_f)\) sa courbe représentative dans un repère orthonormé \((O; \vec{i}, \vec{j})\).
\begin{questions}
\question[1 ] Calculer \(\lim_{x \to 0^+} f(x)\) puis interpréter le résultat graphiquement.
\question
\begin{parts}
\part Calculer \(\lim_{x \to +\infty} f(x)\).
\part[0.5 ] Montrer que la droite \((\Delta)\) d'équation \(y = x - 1\) est une asymptote oblique à \((C_f)\) au voisinage de \(+\infty\).
\part[1 ] Déterminer la position relative de \((C_f)\) et de la droite \((\Delta)\).
\end{parts}
\item
\begin{parts}
\part[1 ] Vérifier que \(\forall x \in ]0; +\infty[, \; f'(x) = \frac{g(x)}{x^2}\).
\part[0.5 ] Dresser le tableau de variation de la fonction \(f\) sur l’intervalle \(]0; +\infty[\).
\end{parts}
\question[1 ] Donner l’équation de la tangente \((T)\) à \((C_f)\) au point d’abscisse \(1\).
\question[1 ] Tracer la droite \((\Delta)\) et la courbe de \((C_f)\) dans le repère \((O; \vec{i}, \vec{j})\).
\end{questions}
}
\vspace*{-0.25cm}
% Exercise 3 (originally 3)
\printexo{3}{}{
\vspace*{-1cm}
\begin{questions}
\question[1.5]
\noindent\textbf{Partie A:~}
Déterminer la forme algébrique des nombres complexes suivants :\\
~\(
z_1 = (3 - 6i) - 3 + 2i, \quad z_2 = (1 + i)(-5 + 3i), \quad z_3 = \frac{(1+i)(4 - 5i)}{3 + 4i}
\)~
\question
\noindent\textbf{Partie B:~}
Le plan \(\mathcal{P}\) est rapporté à un repère orthonormé direct \((O, \vec{u}, \vec{v})\). On considère les points \(A(1 + 2i)\), \(B(3 + 4i)\) et \(C(3)\).
\begin{parts}
\part[0.75 ] Placer les points \(A\), \(B\) et \(C\).
\part[1 ] Déterminer les affixes des vecteurs \(\overrightarrow{AB}\) et \(\overrightarrow{BC}\).
\part[1 ] Déterminer l’affixe du point \(D\) tel que le quadrilatère \(ABCD\) soit un parallélogramme.
\part[0.75 ] Déterminer l’affixe du point \(I\) centre du parallélogramme \(ABCD\).
\part[1 ] Soit \(E\) un point du plan complexe d’affixe \(z_E = \frac{5}{2}(1 + i)\). Les points \(D\), \(B\) et \(E\) sont-ils alignés ?
\end{parts}
\end{questions}
}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir 03, S01 (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC