Correction: serie exercices les nombres complexes, ex4
📅 February 24, 2024 | 👁️ Views: 264

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=0.50cm]{geometry}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{mathrsfs}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{xcolor}
%\usepackage{setspace}
%\usepackage{fancyhdr}
\usepackage[ddmmyyyy]{datetime}
\usepackage{tikz}
\usetikzlibrary{shapes}
%\usepackage{draftwatermark}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
%\SetWatermarkText{\mylink}
%\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
%\SetWatermarkLightness{0.95}
%\SetWatermarkScale{0.8}
% Define colors
\definecolor{lightpurple}{RGB}{221,160,221}
\definecolor{darkpurple}{RGB}{148,0,211}
\definecolor{lightblue}{RGB}{173,216,230}
\newcommand{\mylabel}[2][lightblue]{%
\begin{tikzpicture}[baseline=20pt]
\node[draw=#1, fill=#1, text=black, inner sep=2pt,
rounded corners=2pt, font=\tiny, anchor=north] at (0,1) (label) {#2}; % Adjust the y-coordinate here
\draw[->, thick, #1] (label) -- +(10pt,0);
\end{tikzpicture}%
}
% Define fancy exercise command
\newcommand{\exe}[1]{
\begin{tikzpicture}[baseline=3pt]
\node[ellipse, inner sep=3pt, outer sep=0pt, fill=lightblue, draw=darkpurple, line width=1.5pt]
at (0,0.2)
{\textcolor{darkpurple}{\textbf{Exercise #1:}}};
\end{tikzpicture}
}
%
\newcolumntype{X}{>{\centering\arraybackslash}p}
\newcolumntype{C}{>{\centering\arraybackslash}X}
%\setstretch{1.10}
\everymath{\displaystyle}
\begin{document}
\thispagestyle{empty}
\noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
Lycee Taghzirt\textbf{/}Prof MOSAID &
2023-2024\textbf{/}Devoir Libre 1 S02&
TCSF-3\textbf{/}2h\\
\bottomrule
\end{tabularx}
\mylink \hfill \mylink\\
\exe{4}\\
Résoudre les équation complexe suivantes :
\( z^2 + 2z + 5 = 0, \quad z^2+z+1=0, \quad z^4+1=0\) \\
\hspace*{1cm}\( z^2 + 2z + 5 = 0, \quad 2z^2-4z+7=0 \) \\
\begin{center}
\textcolor{red}{\textbf{\underline{Solution:}}}\\
\end{center}
\mylabel[green]{1.} Pour \( z^2 + 2z + 5 = 0 \) :
\( \Delta = b^2 - 4ac = 2^2 - 4 \times 1 \times 5 = 4 - 20 = -16 \)
Puisque \( \Delta \) est négatif, nous pouvons directement utiliser la formule :
\( z = \frac{{-b \pm i\sqrt{{-\Delta}}}}{{2a}} \)\\
Donc \(z_1= \frac{{-2 - i\sqrt{{16}}}}{{2 \times 1}} = \frac{{-2 - 4i}}{2} = -1 - 2i \)
et
\( z_2 = \frac{{-2 + i\sqrt{{16}}}}{{2 \times 1}} = \frac{{-2 + 4i}}{2} = -1 + 2i \)\\
\mylabel[green]{2.} Pour \( z^2 + z + 1 = 0 \) :
\( \Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times 1 = 1 - 4 = -3 \)
Encore une fois, \( \Delta \) est négatif, donc :
\( z = \frac{{-1 - i\sqrt{{3}}}}{{2 \times 1}} = \frac{{-1 - i\sqrt{{3}}}}{2} \)
et
\( z = \frac{{-1 + i\sqrt{{3}}}}{{2 \times 1}} = \frac{{-1 + i\sqrt{{3}}}}{2} \)\\
\mylabel[green]{3.} Pour \( z^4 + 1 = 0 \) :\\
On a
\begin{align*}
z^4+1&=0\\
z^4-(-1)&=0\\
(z^2)^2-i^2&=0\\
(z^2-i)(z^2+i)&=0\\
z^2-i=0 \qquad\text{ou} &\qquad z^2+i=0\\
z^2=i \qquad\text{ou} &\qquad z^2=-i\\
z^2=e^{i\frac{\pi}{2}} \qquad\text{ou} &\qquad z^2=e^{-i\frac{\pi}{2}}
\qquad\text{remarquer que \(i = 0+1\times i = \cos \frac{\pi}{2} +\sin\frac{\pi}{2}\times i\)}\\
z = \pm(e^{i\frac{\pi}{2}})^{\frac{1}{2}} \qquad\text{ou}
&\qquad z = \pm(e^{-i\frac{\pi}{2}})^{\frac{1}{2}}\\
z = \pm e^{i\frac{\pi}{4}} \qquad\text{ou}
&\qquad z = \pm e^{-i\frac{\pi}{4}}\\
z = \pm(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}) \quad\text{ou}&
\quad z = \pm(\cos\frac{-\pi}{4} + i \sin\frac{-\pi}{4}) \\
\end{align*}
Alors
\begin{align*}
\quad z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \quad\text{ou}&
\quad z = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \quad\text{ou}&
\quad z = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \quad\text{ou}&
\quad z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \\
\end{align*}
\mylabel[green]{4.} Pour \( 2z^2 - 4z + 7 = 0 \) :
\( \Delta = b^2 - 4ac = (-4)^2 - 4 \times 2 \times 7 = 16 - 56 = -40 \)
Donc :
\( z_1 = \frac{{4 - i\sqrt{{40}}}}{{2 \times 2}} = \frac{{4 - 2i\sqrt{{10}}}}{4} = 1 -i\frac{{\sqrt{{10}}}}{2} \)
et
\( z_2 = \frac{{4 + i\sqrt{{40}}}}{{2 \times 2}} = \frac{{4 + 2i\sqrt{{10}}}}{4} = 1 + i\frac{{\sqrt{{10}}}}{2} \)
\\
\\
\textcolor{white}{.}\hfill \underline{MOSAID le \today}\\
\textcolor{white}{.}\hfill \mylink
\\
\end{document}
Related Courses, Exams, and Exercises
Solution PDF:
📥 Download Correction: serie exercices les nombres complexes, ex4 (PDF)