Correction: serie exercices les nombres complexes, ex3
📅 February 18, 2024 | 👁️ Views: 203

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=1.00cm]{geometry}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{mathrsfs}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{fancyhdr,xcolor}
\usepackage[ddmmyyyy]{datetime}
\usepackage{tikz}
\usetikzlibrary{shapes}
\usepackage{draftwatermark}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}
%\SetWatermarkText{\mylink}
\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
\SetWatermarkLightness{0.95}
\SetWatermarkScale{0.8}
% Define colors
\definecolor{lightpurple}{RGB}{221,160,221}
\definecolor{darkpurple}{RGB}{148,0,211}
\definecolor{lightblue}{RGB}{173,216,230}
\newcommand{\mylabel}[2][lightblue]{%
\begin{tikzpicture}[baseline=20pt]
\node[draw=#1, fill=#1, text=black, inner sep=2pt,
rounded corners=2pt, font=\tiny, anchor=north] at (0,1) (label) {#2}; % Adjust the y-coordinate here
\draw[->, thick, #1] (label) -- +(10pt,0);
\end{tikzpicture}%
}
\newcommand{\myhighlight}[2]{\setlength{\fboxsep}{0pt}\fcolorbox{#1}{#1}{\textcolor{black}{#2}}}
% Define fancy exercise command
\newcommand{\exe}[1]{
\begin{tikzpicture}[baseline=3pt]
\node[ellipse, inner sep=3pt, outer sep=0pt, fill=lightpurple, draw=darkpurple, line width=1.5pt]
at (0,0.2)
{\textcolor{darkpurple}{\textbf{Exercise #1:}}};
\end{tikzpicture}
}
% Define header and footer
\pagestyle{fancy}
\fancyhf{} % Clear header and footer
\fancyhead[L]{Lycee Taghzirt\textbf{/}Prof MOSAID}
\fancyhead[C]{\hspace*{2.5cm}2023-2024\textbf{/}Correction Série: Complexes}
\fancyhead[R]{2BAC-PC/SVT}
\renewcommand{\headrulewidth}{0.1pt} % Add a rule below the header
\setlength{\headheight}{50pt} % Adjust the headheight to avoid warning
\setlength{\headsep}{-2pt} % Adjust the headsep to reduce space between header and text area
\newcolumntype{L}[1]{>{\raggedright\arraybackslash$}p{#1}<{$}}
\newcolumntype{Y}{>{\raggedright\arraybackslash\fontsize{7}{8}\selectfont$}l<{$}}
\begin{document}
\mylink \hfill \mylink\\
%============================
% add exercices here
%============================
\noindent
\begin{minipage}[t]{0.48\textwidth}
\exe{3}\\
Considérez les points \( A \), \( B \), et \( C \) dans le plan complexe avec
les affixes suivantes :\\
\hspace*{1cm} \( a = 2 + 3i, \quad b = -1 - i, \quad c = 4 + 2i \) \\
\mylabel[lightblue]{1}Calculez les distances \( AB \) et \( BC \).\\
\mylabel[lightblue]{2}Trouvez les affixes des vecteurs \( \overrightarrow{AB} \) et \( \overrightarrow{AC} \).\\
\mylabel[lightblue]{3}Calculez la mesure de l'angle \( \widehat{(\overrightarrow{AB},\overrightarrow{AC} )} \)\\
\hspace*{1cm}en radians.\\
\\
\Centering \myhighlight{yellow}{\large Solution}\\
\mylabel[green]{1} Pour calculer la distance entre deux points dans le plan complexe, nous utilisons la formule de la distance entre deux points \(z_1\) et \(z_2\) dans le plan complexe, qui est \(|z_2 - z_1|\).\\
\begin{align*}
AB &= |b - a| \\
&= |-1 - i - (2 + 3i)| \\
&= |-3 - 4i| \\
&= \sqrt{(-3)^2 + (-4)^2} \\
&= \sqrt{9 + 16} \\
&= \sqrt{25}\\
&= 5
\end{align*}
\begin{align*}
BC &=|c - b| \\
&= |(4 + 2i) - (-1 - i)|\\
&= |5 + 3i| \\
&= \sqrt{5^2 + 3^2} \\
&= \sqrt{25 + 9} \\
&= \sqrt{34}
\end{align*}
\mylabel[green]{2} Les affixes des vecteurs \(\overrightarrow{AB}\) et \(\overrightarrow{AC}\) sont :
\begin{align*}
\overrightarrow{AB} &( b - a)\\
&( (-1 - i) - (2 + 3i))\\
&( -1 - i - 2 - 3i )\\
&( -3 - 4i )
\end{align*}
\begin{align*}
\overrightarrow{AC} &( c - a)\\
&( (4 + 2i) - (2 + 3i) )\\
&( 4 + 2i - 2 - 3i)\\
&( 2 - i )
\end{align*}
\end{minipage}
\hspace*{0.1cm}
\vline
\hspace*{0.1cm}
\begin{minipage}[t]{0.47\textwidth}
\mylabel[green]{3}Calculez la mesure de l'angle \( \widehat{(\overrightarrow{AB},\overrightarrow{AC} )} \)
en radians.
\[\overline{(\overrightarrow{AB},\overrightarrow{AC})} \equiv Arg\Bigg(\frac{c-a}{b-a} \Bigg) [2\pi]\]
Calculons \(\frac{c-a}{b-a}\):
\[
\begin{aligned}
\frac{c-a}{b-a} &= \frac{(4+2i)-(2+3i)}{(-1-i)-(2+3i)} \\
&= \frac{2-i}{-3-4i}\\
&= \frac{(2-i)(-3+4i)}{(-3-4i)(-3+4i)} \\
&= \frac{-6+8i+3i+4}{9+16} \\
&= \frac{-2+11i}{25}
\end{aligned}
\]
Donc, \(\frac{c-a}{b-a} = \frac{-2-11i}{25}=\frac{-2}{25}+i\frac{-11}{25}\). \\
Donc \(\theta = \tan^-1\bigg(\frac{-11}{-2}\bigg) = 79.69^\circ\)\\
puisque les deux valeurs de \(\sin \theta\) et \(\cos \theta\) sont négatives
alors \(\theta\) est dans le \(3^\text{ème}\) quard du cercle \\
alors \(\theta = 180 + 79.69 = 259.69^\circ = 1.443\pi rad\)
\end{minipage}
\\
\\
\textcolor{white}{.}\hfill \underline{MOSAID le \today}\\
\textcolor{white}{.}\hfill \mylink
\end{document}
Related Courses, Exams, and Exercises
Solution PDF:
📥 Download Correction: serie exercices les nombres complexes, ex3 (PDF)