Control 02 Semester 02 , Géneralités sur les Fonctions (A)
📅 May 20, 2025 | 👁️ Views: 7

\documentclass[12pt, a4paper]{exam}%answers,addpoints, answers,
\usepackage[left=2.5cm,right=0.5cm,top=0cm,bottom=1cm]{geometry} % Set page margins
\usepackage[french]{babel}
\usepackage{fontspec}
\usepackage{calligra} % For calligraphy font
\usepackage[T1]{fontenc}
\usepackage{amsmath, amssymb}
\usepackage{tikz} % For drawing the vertical line
\usetikzlibrary{shapes,decorations.text}
\usetikzlibrary{decorations.pathmorphing,shadows}
\usepackage{xcolor}
\usepackage{setspace}
\usepackage[ddmmyyyy]{datetime}
\usepackage{xparse} % Required for advanced argument parsing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Start config %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\classname{TCSF}
\def\dsname{Contrôl n$^\circ$2/2h}
\def\dsletter{A}
\def\prof{MOSAID}
% borders right margin
\def\bordersrmargin{0.5}
% borders height in answers mode
\def\bordersheighta{28}
% borders height
\def\bordersheight{14}
\newif\ifprintdouble
% Uncomment the next line to print the ds twice on the same page
\printdoubletrue
%%%%%%%%%%%%%%%%%%%%%%%%%%%% End config %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\pointname{}
\pointformat{\textbf{\textit{(\thepoints)}}}
% Exam settings
\pointsinmargin
%\colorfillwithlines
%\definecolor{FillWithLinesColor}{gray}{0.8}
\colorfillwithdottedlines
\definecolor{FillWithDottedLinesColor}{gray}{0.7}
\unframedsolutions
\renewcommand{\solutiontitle}{\noindent\textbf{}\enspace}
\SolutionEmphasis{\itshape\small}
\SolutionEmphasis{\color{red}\bfseries}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
\newcommand{\luck}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[] at (#1) {\scalebox{2}{\textbf{\textcolor{blue}{\calligra Good Luck!}}}};
%rotate=25
\end{tikzpicture}
}
\NewDocumentCommand{\sticker}{O{6.5} O{-10} m m}{%
\begin{tikzpicture}[overlay, remember picture, shift={(#3)}]
% Rectangle with wavy border and text node
\node[
shape=rectangle, % Rectangle shape
decorate,
decoration={random steps, segment length=2mm, amplitude=1.5mm}, % Wavy effect
fill=cyan!20, % Background color
draw=red, % Border color
line width=1pt, % Border thickness
inner sep=5pt, % Padding between text and border
text width=#1, % Width of the text box
align=center, % Center the text
rotate=#2, % Rotation angle
] (sticker) at (0, 0) { % Position of the sticker
#4
};
% Label
\node[] at ([xshift=0.5cm]sticker.north west) {
\includegraphics[width=0.9cm]{pin.png}
};
\end{tikzpicture}%
}
\newcommand{\dangericon}{%
\tikz[baseline=-0.5ex]{
\draw[draw=red, line width=1mm] (0,0.5) -- (0.7,-0.6) -- (-0.7,-0.6) -- cycle;
\node[inner sep=0pt, font=\bfseries, scale=2] at (-0.05,-0.2) {!};
}%
}
\newcommand{\stamp}[2]{
\begin{tikzpicture}[remember picture, overlay]
\coordinate (A) at (#1,#2);
\draw[red!50] (A) circle (1.9cm);
% Draw the inner circle
\draw[red!50] (A) circle (1.4cm);
% Draw the curved line
\draw[red!50, decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|★MOSAID RADOUAN★},
text align={align=center}, raise=-3pt}] (A) ++ (180:1.6cm) arc (180:0:1.6cm);
\draw[decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|∞★~mosaid.xyz~★∞ },
text align={align=center}, raise=-6.5pt}] (A) ++ (180:1.53cm) arc (-180:0:1.53cm);
\node[red!75,font=\fontsize{48}{48}\fontspec{DejaVu Sans}\bfseries\selectfont] at (A) {✷};
\end{tikzpicture}
}
\newcommand{\borders}{%
\tikz[remember picture, overlay, xshift=-0.5cm]{
\ifprintanswers
\def\bheight{\bordersheighta}
\else
\def\bheight{\bordersheight}
\fi
\draw[gray, thick] (\bordersrmargin,-1.2) -- (\bordersrmargin,-\bheight);
\draw[gray, thick] (\bordersrmargin,-1.2) -- (\textwidth,-1.2);
\node[black] at (0.5,-0.25) {\textbf{\classname}};
\node[magenta] at (1.6,-0.6) {\textbf{www.mosaid.xyz}};
\node[black,xshift=-2cm] at (\textwidth,-0.25) {\textbf{\today}};
\node[black,xshift=-2cm] (A) at (\textwidth,-0.9) {\textbf{Prof : \prof}};
\node[black,xshift=-0.5cm] at (0.5\textwidth,-0.5) {
\ifprintanswers
\textbf{Correction \dsname }
\else
\textbf{\dsname}
\fi
\ccc{\dsletter}
};
\draw[gray, thick] (A.south west) -- ++(0,0.7) -- ++(3.8,0) ;
\node[magenta] at (0.9\textwidth,-1.4) {\textbf{www.mosaid.xyz}};
}%
}
\newcommand{\exo}[1]{%
\begin{tikzpicture}
% Node for the text
\node[] (text) at (0,0) {\textbf{\#1}};
% Shadow (calculated based on the text width)
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
% Main box (calculated based on the text width)
\draw[fill=white] (text.south west) rectangle (text.north east);
% Text inside the box
\node[] at (text) {\textbf{\#1}};
\end{tikzpicture}%
}
%\footer{}{Page \thepage\ of \numpages}{}
\everymath{\displaystyle}
\setstretch{1.2}
\newenvironment{mycontent}{%
\noindent
\borders\\[1.5cm]
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Start of the exam %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\noindent
\exo{Exercice 1: (\textit{8 pts}) }
\begin{questions}
\question[$4$]
determiner le domaine de défnition des fonctions suivantes\\
\hspace*{0.5cm} $f(x)=2x+|x-3|$ \hspace*{0.2cm};\hspace*{0.2cm}
\hspace*{0.5cm} $g(x)=\frac{x}{x^2-9}$ \hspace*{0.2cm};\hspace*{0.2cm}
\hspace*{0.5cm} $h(x)=\sqrt{x^2-4}$
\question[2]
est ce que les fonctions suivantes sont égales\\
\hspace*{0.5cm} $f(x)=x$ \hspace*{0.2cm}et\hspace*{0.2cm} $g(x)=\sqrt{x^2}$
\question[2]
Soit $f$ une fonction paire \\
\hspace*{0.5cm} sachant que pour tout $x>0$ \hspace*{0.2cm}: $f(x)=2x+3$ \hspace*{0.2cm}
determiner $f(x)$ pour tout $x<0$
\end{questions}
\exo{Exercice 2: (\textit{12 pts}) }\\
\stamp{15.5}{4}
\luck{14,-1}
\hspace*{0.5cm}Soit la fonction ~$f$~ définie par $f(x) = \frac{x}{1+x^2}$
\begin{questions}
\question[1]
Déterminer ~$D_f$~ le domaine de défnition de la fonction ~$f$~
\question[2]
Calculer ~$f(0)$~ et ~$f(1)$~
\question[2]
Montrer que ~$f$~ est une fonction impaire
\question
\begin{parts}
\part[2]
Montrer que le taux de variations de ~$f$~ est ~$T= \frac{1-xy}{(1+x^2)(1+y^2)}$~
\part[2]
Etudier la monotonie de ~$f$~ sur ~$[0;1]$~ et ~$[1;+\infty[$~
\part[1]
Etablir le tableau des variations de ~$f$~ sur ~$D_f$~
\end{parts}
\question[2]
Montrer que ~$\frac{1}{2}$~ est une valeur maximale de ~$f$~ sur ~$\mathbb{R}^*$~
\end{questions}
%%%%%%%%%%%%%%%%%%%%%%%%%%%% End exam %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}% end newenvironment
\begin{document}
\ifprintanswers
\begin{mycontent}\end{mycontent}
\else
%
\fi
% \newpage
\noprintanswers
\begin{mycontent}\end{mycontent}
\ifprintdouble
\textcolor{white}{.}\\
\begin{mycontent}\end{mycontent}
\fi
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Control 02 Semester 02 , Géneralités sur les Fonctions (A) (PDF)