Devoir 02, S01
📅 January 02, 2026 | 👁️ Views: 119
📚 Courses Covered in This Exam:
\documentclass[a4paper,12pt]{article}
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{varwidth}
\usepackage[most]{tcolorbox}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
\usepackage{fancyhdr}
% French language support
\usepackage[french]{babel}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{1BAC.SF}
\def\examtitle{Devoir 02 - S01}
\def\schoolname{Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
\newcommand{\circled}[1]{%
\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=1pt, font=\bf] (char) {\#1};}%
}
% --- Margin offsets for note placement ---
\def\rnotemargin{-1.5} % distance from right edge of text block
\def\lnotemargin{0.5} % distance from left edge of text block
% --- Note number placed 1cm from page edge (right margin) ---
\newcommand{\rnote}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.east)+(\rnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% --- Note number placed 1cm from page edge (left margin) ---
\newcommand{\note}[1]{%
\tikz[remember picture,overlay,baseline=(text.base)]{%
% a tiny anchor at the current line baseline
\node (text) at (0,0) {};%
% coordinate 1cm left of the physical page right edge
\coordinate (marg) at ($(current page.west)+(\lnotemargin,0)$);%
% place the marker using x from 'marg' and y from 'text.base'
\node[anchor=base west,
font=\scriptsize\bfseries,
fill=yellow!30,
draw=black,
circle,
minimum size=14pt,
inner sep=1pt
] at (marg |- text.base) {$#1$};%
}%
}
% Document spacing
\setstretch{1.3}
% Math display style
\everymath{\displaystyle}
%\mathversion{bold}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\newcommand{\dfp}[1]{\dotfill (\bf{\#1 pt})}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-2pt}, % reduce space before
after=\vspace{-2pt} % reduce space after
}
\newcommand{\VMargin}[1]{%
\begin{tikzpicture}[remember picture,overlay]
\draw[line width=1pt]
([xshift=#1]current page.north west) --
([xshift=#1]current page.south west);
\end{tikzpicture}%
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% Exercise Theme 1: TikZ shadow title
\newcommand{\exothemeone}[1]{%
\par\vspace{0pt}\noindent\leavevmode
\begin{tikzpicture}[baseline=(text.base)]
\node[] (text) at (0,0) {\textbf{\#1}};
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
\draw[fill=white] (text.south west) rectangle (text.north east);
\node[] at (text) {\textbf{\#1}};
\end{tikzpicture}\\[0.2cm]
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\exothemeone{\fulltitle}%
\noindent #3%
\vspace{0.2cm}%
}
% --- Header Style 9 (fr) ---
\newcommand{\printheadnine}{%
\arrayrulecolor{lightgray}
\begin{tabular}{m{0.22\textwidth} m{0.52\textwidth} m{0.22\textwidth}}
\textbf{\classname} & \centering \textbf{\examtitle}
& \ddate \\
\wsite & \centering \large\textbf{\secondtitle}
&\hfill
\begin{tabular}{|c}
\hline
\textbf{~~\professor}
\end{tabular}\\
\hline
\end{tabular}
\arrayrulecolor{black}
}
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
\printheadnine
}%
\pagestyle{fancy}
\begin{document}
% Section for Exercise 1
\vspace*{-1cm}
\noindent
\hbox to \textwidth{
\hfil
\fcolorbox{red}{yellow!25}{%
\begin{minipage}{0.6\textwidth}
Le plan est rapporté à un repère orthonormé direct $(O; \vec i, \vec j)$
\end{minipage}%
}%
\hfil
}%
% Exercise 1 (originally 1)
\printexo{1}{: ~ (8 points)}{
On considère dans le plan, les points \( A(3;4) \), \( B(5;3) \) et \( C(6;6) \).\\
Et soit \( G \) le barycentre du système des trois points pondérés \(\{(A;-2); (B;6); (C;-1)\}\).
\begin{enumerate}
\item
\textbf{a)} Montrer que :
~\(
\overrightarrow{AG} = 2\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}
\)~
\dotfill (1\ \text{pt})
\textbf{b)} Placer dans le repère \((O;\vec{i},\vec{j})\) les points \(A, B\) et \(C\) puis construire le point \(G\).
\dotfill (1\ \text{pt})
\textbf{c)} Déterminer les coordonnées du barycentre \(G\).
\dotfill (1\ \text{pt})
\item
Soit \(E\) un point du plan défini par :
~\(
4\overrightarrow{AE} = 6\overrightarrow{AB}
\)~
\dotfill (1\ \text{pt})
\textbf{a)} Montrer que :
~\(
E = \text{bar}\{(A;-2); (B;6)\}
\)~
\dotfill (1\ \text{pt})
\textbf{b)} Déduire que :
~\(
G = \text{bar}\{(E;4); (C;-1)\}
\)~
\dotfill (1\ \text{pt})
\textbf{c)} Déduire que les points \(G, E\) et \(C\) sont alignés.
\dotfill (0,5\ \text{pt})
\item
Soit \(F\) le barycentre du système des deux points pondérés \(\{(B;6); (C;-1)\}\).\\
Montrer que les deux droites \((AF)\) et \((EC)\) se coupent en \(G\).
\dotfill (1\ \text{pt})
\item
Déterminer et construire l’ensemble des points \(M\) du plan tels que :\\\hspace*{2cm}
~\(
\|-2\overrightarrow{MA} + 6\overrightarrow{MB} - \overrightarrow{MC}\| = 3\|\overrightarrow{AB}\|
\dotfill (1,5\ \text{pt})
\)~
\end{enumerate}
}
% Exercise 2 (originally 2)
\printexo{2}{: ~ (4 points)}{
On considère dans le plan, les points \(A(2;4)\), \(B(4;-2)\) et \(C(3+3\sqrt{3}; 1+\sqrt{3})\).
\begin{enumerate}
\item
Calculer
~\(
\cos(\overline{\overrightarrow{AB}, \overrightarrow{AC}}) \quad \text{et} \quad \sin(\overline{\overrightarrow{AB}, \overrightarrow{AC}})
\)~
\dotfill (3\ \text{pts})
\item
Déduire une mesure de l’angle orienté \((\overrightarrow{AB}, \overrightarrow{AC})\) et déduire la nature du triangle \(ABC\).
\dotfill (1\ \text{pt})
\end{enumerate}
}
% Exercise 3 (originally 3)
\printexo{3}{: ~ (8 points)}{
\vspace*{-1cm}
\begin{enumerate}
\item
Soit \((\varphi)\) le cercle défini par la représentation paramétrique :
~\(
\begin{cases}
x = 3 + \sqrt{2} \cos\theta \\
y = -2 + \sqrt{2} \sin\theta
\end{cases}, \quad \theta \in \mathbb{R}
\)~
\textbf{a)} Montrer que
~\(
x^2 + y^2 - 6x + 4y + 11 = 0
\)~
est une équation cartésienne du cercle \((\varphi)\).
\dotfill (1\ \text{pt})
\textbf{b)} Vérifier que \(K(2;-1) \in (\varphi)\) et montrer que
~\(
x - y - 3 = 0
\)~
est une équation cartésienne de la droite \((T)\) qui est tangente à \((\varphi)\) au point \(K\).
\dotfill (0,25 pt + 1 pt)
\item
Soit \((C)\) l’ensemble des points \(M(x;y)\) du plan tel que
~\(
\overrightarrow{AM} \cdot \overrightarrow{BM} = 0
\)~
avec \(A(2;-1)\) et \(B(2;-5)\).
%\dotfill (1\ \text{pt})
\textbf{a)} Montrer que
~\(
\overrightarrow{AM} \cdot \overrightarrow{BM} = 0 \iff x^2 + y^2 - 4x + 6y + 9 = 0
\)~
\dotfill (1\ \text{pt})
\textbf{b)} Déduire que \((C)\) est le cercle de centre \(\Omega(2;-3)\) et de rayon \(R = 2\).
\dotfill (1\ \text{pt})
\textbf{c)} Montrer que la droite \((T)\) coupe le cercle \((\varphi)\) en deux points distincts.
\dotfill (1\ \text{pt})
\item
\textbf{a)} Construire dans le repère \((O;\vec{i},\vec{j})\) les deux cercles \((\varphi)\) et \((C)\) et la droite \((T)\)
%~\(
%\begin{cases}
%x^2 + y^2 - 6x + 4y + 11 \geq 0 \\
%x^2 + y^2 - 4x + 6y + 9 \leq 0 \\
%x - y - 3 > 0
%\end{cases}
%\)~
\dotfill (0,75\ \text{pt})
\textbf{b)} Résoudre graphiquement le système suivant :
~\(
\begin{cases}
x^2 + y^2 - 6x + 4y + 11 \geq 0 \\
x^2 + y^2 - 4x + 6y + 9 \leq 0 \\
x - y - 3 > 0
\end{cases}
\)~
\dotfill (1\ \text{pt})
\item
Soit \((D_m): 2y - 3mx + \sqrt{5} = 0\) une droite dans le plan tels que \(m\) est un paramètre réel.\\
Déterminer la valeur du paramètre \(m\) sachant que \((D_m) \perp (T)\).
\dotfill (1\ \text{pt})
\end{enumerate}
}
\end{document}
Related Courses, Exams, and Exercises
Exam PDF:
📥 Download Devoir 02, S01 (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC