Série : LES PRIMITIVES
📅 December 08, 2025 | 👁️ Views: 1
\documentclass[a4paper,12pt]{article}
% This file now contains only packages and settings
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{fontspec}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{colortbl}
\usepackage{tcolorbox,varwidth}
\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{fancyhdr}
\usepackage{setspace}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=magenta
}
% French language support
\usepackage[french]{babel}
% Two-page layout (conditionally included)
% --- Colors ---
\definecolor{maroon}{cmyk}{0,0.87,0.68,0.32}
\definecolor{pBlue}{RGB}{102, 53, 153}
\definecolor{myblue}{HTML}{1D2A6E}
\definecolor{myred}{HTML}{A97E77}
\definecolor{mybrown}{HTML}{B35823}
\definecolor{gold}{HTML}{B48920}
\definecolor{myorange}{HTML}{ED8C2B}
\definecolor{col}{RGB}{45, 136, 119}
\definecolor{MainRed}{rgb}{.8, .1, .1}
\definecolor{winered}{rgb}{0.5,0,0}
\definecolor{JungleGreen}{HTML}{29AB87}
\definecolor{myblue3}{RGB}{36, 57, 126}
\definecolor{mygray}{RGB}{112,121,139}
\definecolor{LemonGlacier}{RGB}{253,255,0}
\colorlet{myblue3}{red!75!black}
\definecolor{lightgray}{gray}{0.6}
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
% --- Basic Settings ---
% Language variables for French exams
\def\professor{R. MOSAID} % Should be R. MOSAID not {{R. MOSAID}}
\def\classname{2BAC.PC/SVT}
\def\examtitle{Série: LES PRIMITIVES, Par Pr: M. ABDELLAOUI}
\def\schoolname{\textbf{Lycée :} Lycée : Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small{visit ~~\wsite~~ for more!}}
\def\province{Direction provinciale\newline de Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\href{https://www.mosaid.xyz}{\textcolor{magenta}{\texttt{www.mosaid.xyz}}}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
% --- Exam-specific definitions ---
% Exam-specific settings and custom definitions
% This file is generated in the current working directory
% Edit this file to customize your exam settings
% Define column type for centered cells
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\newcolumntype{M}[1]{@{}>{\centering\arraybackslash}m{\#1}@{}}
\newcommand{\tb}{\tikz[baseline=-0.6ex]{\fill (0,0) circle (2pt);}~}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {\#1};
\end{tikzpicture}
}
% Document spacing
\setstretch{1.3}
% Math display style
\everymath{\displaystyle}
%\AtBeginDocument{\fontsize{15}{17}\selectfont}
%\newcommand{\fff}[1]{\makebox[#1cm]{\dotfill}}
\SetEnumitemKey{tight}{
leftmargin=*,
itemsep=0pt,
topsep=0pt,
parsep=0pt,
partopsep=0pt,
before=\vspace{-\baselineskip}, % reduce space before
after=\vspace{-\baselineskip} % reduce space after
}
% Custom theorem environments (uncomment if needed)
% \newtheorem{theorem}{Theorem}
% \newtheorem{lemma}{Lemma}
% \newtheorem{corollary}{Corollary}
% Custom exercise environments (uncomment if needed)
% \newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
% \newenvironment{remark}{\begin{proof}[Remark]}{\end{proof}}
% Custom commands for this exam (add your own below)
% \newcommand{\answerline}[1]{\underline{\hspace{\#1}}}
% \newcommand{\points}[1]{\hfill(\mbox{\#1 points})}
% Additional packages (uncomment if needed)
% \usepackage{siunitx} % For SI units
% \usepackage{chemformula} % For chemical formulas
% \usepackage{circuitikz} % For circuit diagrams
% Page layout adjustments
% \setlength{\parindent}{0pt}
% \setlength{\parskip}{1em}
% Custom colors for this exam
% \definecolor{myblue}{RGB}{0,100,200}
% \definecolor{mygreen}{RGB}{0,150,0}
% ----------------------------------------------------------------------
% ADD YOUR CUSTOM DEFINITIONS BELOW THIS LINE
% ----------------------------------------------------------------------
% Example:
\newcommand{\dif}{\mathrm{d}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\C}{\mathbb{C}}
% --- Theme 11: Chevron arrow banner (as in scanned sheet) ---
\definecolor{arrowblue}{RGB}{0,140,180}
\definecolor{bannerblue}{RGB}{210,240,240}
\newtcolorbox{exothemeeleven}[2][]{%
enhanced,
breakable,
width=\linewidth,
colback=white,
colframe=white,
boxrule=0pt,
left=0pt, right=0pt, top=5pt, bottom=0pt,
boxsep=0pt,
before skip=5pt, after skip=5pt,
interior style={fill=none, top color=white, bottom color=white},
title={\#2},
boxed title style={empty, boxrule=0pt, top=0pt, bottom=0pt},
attach boxed title to top left={yshift=0pt},
varwidth boxed title=0.9\linewidth,
before upper={\parskip=4pt},
overlay unbroken={
% Chevron banner background
\begin{scope}[shift={(frame.north west)}]
\fill[bannerblue] (0,0) rectangle (\linewidth,0.8);
\fill[arrowblue] (-0.4,0) -- (0.4,0.4) -- (-0.4,0.8) -- (0,0.4) -- cycle;
\node[anchor=west, font=\bfseries] at (0.4,0.4)
{\tcbtitletext};
\end{scope}
},
#1
}
\newcommand{\printexo}[3]{%
\if\relax\detokenize{\#2}\relax
\def\fulltitle{Exercice #1}%
\else
\def\fulltitle{Exercice #1~#2}%
\fi
\begin{exothemeeleven}{\fulltitle}#3\end{exothemeeleven}%
\vspace{0.2cm}%
}
% --- Custom Header (fr) ---
% Custom header based on default header style 9
% Language: fr
\newcommand{\printheadnine}{%
\arrayrulecolor{lightgray}
\begin{tabular}{m{0.16\textwidth} m{0.63\textwidth} m{0.18\textwidth}}
\textbf{\classname} & \centering \textbf{\examtitle}
& \ddate \\
\wsite & \centering \large\textbf{\secondtitle}
&\hfill
\begin{tabular}{|c}
\hline
\textbf{~~\professor}
\end{tabular}\\
\hline
\end{tabular}
\arrayrulecolor{black}
}
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0pt}
\setlength{\headheight}{47pt}
\setlength{\headsep}{0pt}
\fancyhead[C]{%
\printheadnine
}%
\pagestyle{fancy}
\begin{document}
% Exercise 1 (originally 1)
\printexo{1}{}{
Déterminer dans chaque cas les primitives des fonctions suivantes :\\
\begin{minipage}[t]{0.3\textwidth}
\begin{enumerate}
\item $f(x) = x^8 + x^2$
\item $f(x) = 3x^2 + 5x + 1$
\item $f(x) = \dfrac{x^4}{3} - 12x^2 + \dfrac{3}{2}$
\item $f(x) = x^9 - 3x^2 + 2$
\item $f(x) = -5x^5 + 3$
\item $f(x) = -\dfrac{4}{3}x^3 + 6x$
\item $f(x) = 15x^2 - \dfrac{1}{3}x + 2$
\item $f(x) = -3x + \dfrac{1}{4}x^3$
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.3\textwidth}
\begin{enumerate}[start=9]
\item $f(x) = \dfrac{1}{x^2} + 3x$
\item $f(x) = -\dfrac{2}{3}x + \dfrac{3}{x^2}$
\item $f(x) = -\dfrac{1}{(x-2)^2}$
\item $f(x) = \dfrac{3}{(2x-3)^2}$
\item $f(x) = \dfrac{5}{(-2x+1)^2} + 3$
\item $f(x) = 2x(x^2 + 3)$
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.3\textwidth}
\begin{enumerate}[start=15]
\item $f(x) = (x+2)^3$
\item $f(x) = (3x-2)^4$
\item $f(x) = x^2(x^3 + 5)^3$
\item $f(x) = \cos(x)$
\item $f(x) = \sin(x)$
\item $f(x) = \cos(3x)$
\item $f(x) = 1 - \cos(2x)$
\item $f(x) = \cos\left(3x + \dfrac{\pi}{2}\right)$
\end{enumerate}
\end{minipage}
}
% Exercise 2 (originally 2)
\printexo{2}{}{
Dans chaque cas, déterminer la primitive $F$ de $f$ vérifiant la condition donnée :\\
\begin{minipage}[t]{0.48\textwidth}
\begin{enumerate}
\item $f(x) = -2x + 4$, et $F(2) = 3$
\item $f(x) = 8x^3 - 3x$, et $F(1) = 2$
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.48\textwidth}
\begin{enumerate}[start=3]
\item $f(x) = \dfrac{1}{(x+1)^2} + 1$, et $F(0) = 2$
\item $f(x) = 2\cos(2x) + 2$, et $F\left(\dfrac{\pi}{4}\right) = 1$
\end{enumerate}
\end{minipage}
}
% Exercise 3 (originally 3)
\printexo{3}{}{
Donner les primitives de chacune des fonctions proposées en précisant leurs domaine de définition.\\
\begin{minipage}[t]{0.34\textwidth}
\begin{enumerate}
\item $f(x) = 2x^2 - 3x + 1$
\item $f(x) = 3x^4 - 3x^2 + x - 5$
\item $f(x) = (x-3)^2(x+1)$
\item $f(x) = (\sqrt{2}x + 3)^2$
\item $f(x) = (2x+1)\left(x^2 + x + 1\right)^{21}$
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.3\textwidth}
\begin{enumerate}[start=6]
\item $f(x) = (x+2)^3$
\item $f(x) = \dfrac{3}{(3x-3)^2}$
\item $f(x) = \dfrac{2x}{(x^2 + 1)^3}$
\item $f(x) = \dfrac{3x^2 + 1}{(x^3 + x)^3}$
\item $f(x) = \dfrac{1 + 2x}{\sqrt{1 + x + x^2}}$
\end{enumerate}
\end{minipage}
\begin{minipage}[t]{0.3\textwidth}
\begin{enumerate}[start=11]
\item $f(x) = \dfrac{x + 1}{\sqrt{x^2 + 2x + 21}}$
\item $f(x) = \sin(x)\cos^3(x)$
\item $f(x) = \sin^3(x)$
\item $f(x) = \sqrt[3]{x + 1}$
\item $f(x) = \dfrac{5}{3}x^5 - \dfrac{3}{4}x^3 + \dfrac{2}{3}x^2 + 2$
\end{enumerate}
\end{minipage}
}
% Exercise 4 (originally 4)
\printexo{4}{}{
Soit $f$ la fonction numérique définie sur $[0, +\infty[$ par :
~$
f(x) = \frac{x^2 + 2x}{(x+1)^2}
$~
\begin{enumerate}
\item Déterminer les réels $a$ et $b$ tels que :
~$
\forall x \in [0, +\infty[ \quad f(x) = a + \frac{b}{(x+1)^2}
$~
\item En déduire les fonctions primitives de la fonction $f$ sur l’intervalle $[0, +\infty[$.
\item En déduire la fonction primitive $F$ de $f$ sur l’intervalle $[0, +\infty[$ vérifiant :
~$
F(1) = \frac{5}{2}.
$~
\end{enumerate}
}
\end{document}
Related Courses, Exams, and Exercises
Exercise PDF:
📥 Download Série : LES PRIMITIVES (PDF)
if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع
Buy me a coffee — إشتر لي قهوة
PayPal.me • عبر بايبالOr bank transfer • أو حوالة بنكية
Titulaire : RADOUAN MOSAID RIB : 230 090 6501953211022000 65 IBAN : MA64 2300 9065 0195 3211 0220 0065 BIC / SWIFT : CIHMMAMC