Devoir 02 S01, Ensembles et applications

📅 November 17, 2025   |   👁️ Views: 1







    

\documentclass[a4paper,12pt]{article}
\usepackage[left=1.00cm, right=1.00cm, top=2cm, bottom=1.50cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\usepackage{amsmath, amssymb}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{mathrsfs}
\usepackage{tcolorbox,varwidth}
\usepackage{fontspec}

\usepackage{colortbl}
\usepackage{libertinus}

\tcbuselibrary{skins,breakable}
\usepackage{tikz}
\usetikzlibrary{calc}
\usetikzlibrary{shadows}
\usepackage{tabularx, array}
\usepackage{fancyhdr}
\usepackage{setspace}

% Define column type for centered cells

\usepackage{bidi}

\newfontfamily\arabicfont[Script=Arabic,Scale=1.1]{Amiri}

\definecolor{lightgray}{gray}{0.6}

% --- Basic Settings ---
\def\professor{R. MOSAID}
\def\classname{1BAC.SM}
\def\examtitle{Devoir 02 - S01, par Prof : FAHD HAOURECH}
\def\schoolname{\textbf{Lycée :} Taghzirt}
\def\academicyear{2025/2026}
\def\subject{Mathématiques}
\def\duration{2h}
\def\secondtitle{\small(Ensembles \& applications)}
\def\province{Direction provinciale de\\ Beni Mellal}
\def\logo{\includegraphics[width=\linewidth]{images/logo-men.png}}
\def\wsite{\color{magenta}\texttt{www.mosaid.xyz}}
\def\ddate{\hfill \number\day/\number\month/\number\year~~}
\def\bottommsg{Bonne chance!}
\setstretch{1.3}
\everymath{\displaystyle}

% --- Exercise Theme 1 ---
% Exercise Theme 1: TikZ shadow title
\newcommand{\exothemeone}[1]{%
\par\vspace{0pt}\noindent\leavevmode
\begin{tikzpicture}[baseline=(text.base)]
    \node[] (text) at (0,0) {\textbf{\#1}};
    \fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
                 rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
    \draw[fill=white] (text.south west) rectangle (text.north east);
    \node[] at (text) {\textbf{\#1}};
\end{tikzpicture}\\[0.2cm]
}

\newcommand{\printexo}[3]{%
  \if\relax\detokenize{\#2}\relax
    \def\fulltitle{Exercice #1}%
  \else
    \def\fulltitle{Exercice #1~#2}%
  \fi
  \exothemeone{\fulltitle}%
  \noindent #3%
  \vspace{0.2cm}%
}
% --- Header Style 9 ---
\newcommand{\printheadnine}{%

  \arrayrulecolor{lightgray}

  \begin{tabular}{m{0.24\textwidth} m{0.48\textwidth} m{0.24\textwidth}}
      \textbf{\classname} & \centering \textbf{\examtitle}
      & \ddate \\
      \wsite & \centering \large\textbf{\secondtitle}
      &\hfill
        \begin{tabular}{|c}
          \hline
          \textbf{~~\professor}
        \end{tabular}\\
      \hline
  \end{tabular}

  \arrayrulecolor{black} % restore default if needed
}

\fancyhf{}%
\renewcommand{\headrulewidth}{0pt}%
\renewcommand{\footrulewidth}{0pt}%
\setlength{\headheight}{47pt}%
\setlength{\headsep}{0pt}%
\fancyhead[C]{%
    \printheadnine
}%
\pagestyle{fancy}%
\begin{document}

% Exercise 1
\printexo{1}{(2pts)}{
On considère les ensembles A et B suivants :\\
~$A = \{(x, y) \in \mathbb{Z}^2 / x^2 + y^2 = 1\} \quad \text{et} \quad B = \{n \in \mathbb{N} / n^2 - 7n + 6 < 0\}$~\\
Ecrire en extension les ensembles A et B.
}

% Exercise 2
\printexo{2}{(3pts)}{
On considère les ensembles A et B suivants :\\
~$A = \left\{ \frac{\pi}{3} + \frac{k\pi}{6} / k \in \mathbb{Z} \right\} \quad \text{et} \quad B = \left\{ \frac{\pi}{6} + \frac{k\pi}{3} / k \in \mathbb{Z} \right\}$~\\
Montrer que : \(B \subset A\) et \(A \not\subset B\)
}

% Exercise 3
\printexo{3}{(6pts)}{
On considère l'application \(f\) suivante :
\begin{tabular}{ll}
~$f : \mathbb{R} \backslash \{1\} \rightarrow \mathbb{R} $~\\
~$\quad\;\; x \mapsto \frac{x^2 - 2x + 3}{(x - 1)^2}$~
\end{tabular}


\begin{enumerate}
    \item
    \begin{enumerate}[label=(\alph*)]
        \item Montrer que : \((\forall x \in \mathbb{R} \backslash \{1\}) : f(x) > 1\)
        \item \(f\) est-elle surjective? Justifier.
    \end{enumerate}

    \item
    \begin{enumerate}[label=(\alph*)]
        \item Montrer que : \((\forall x \in IR \backslash \{1\}) : f(2 - x) = f(x)\)
        \item \(f\) est -elle injective? Justifier.
    \end{enumerate}

    \item On considère l'application \(g\) suivante :
\begin{tabular}{ll}
      ~$g : ]1, +\infty[\rightarrow ]1, +\infty[$ \\
      $\quad\;\; x \mapsto \frac{x^2 - 2x + 3}{(x - 1)^2}$~
\end{tabular}

    Montrer que \(g\) est bijective et déterminer sa bijection réciproque \(g^{-1}\).
\end{enumerate}
}

% Exercise 4
\printexo{4}{(5pts)}{
Soient A, B et C trois parties d'un ensemble E.
\begin{enumerate}
    \item Montrer que : \((A \cup B) \times C = (A \times C) \cup (B \times C)\)
    \item Montrer que : \(A \backslash (B \cap C) = (A \backslash B) \cup (A \backslash C)\)
    \item Montrer que : \(A \backslash (B \backslash C) = (A \backslash B) \cup (A \cap C)\)
    \item Montrer que : \(A \backslash B = B \backslash A \Leftrightarrow A = B\)
\end{enumerate}
}

% Exercise 5
\printexo{5}{(3pts)}{
  \vspace*{-0.75cm}
\begin{enumerate}
    \item Montrer que : \((\forall (a, b) \in IR^2) : a \times b \leq a^2 + b^2\)
    \item Soient les ensembles : \(A = \{x \in IR / x^2 - 2ax + b = 0\}\) Et \(B = \{x \in IR / x^2 - 2cx + d = 0\}\) où \(a, b, c\) et \(d\) sont des nombres réels tels que : \(b + d = ac\) Montrer que : \(A \neq \varnothing\) ou \(B \neq \varnothing\)
\end{enumerate}
}
\begin{center}
  \vskip 3pt \hrule height 3pt \vskip 5pt \RL{\arabicfont ﴿بِسْمِ ٱللَّهِ ٱلرَّحْمَـٰنِ ٱلرَّحِيمِ تَبَـٰرَكَ ٱلَّذِى بِيَدِهِ ٱلْمُلْكُ وَهُوَ عَلَىٰ كُلِّ شَىْءٍ قَدِيرٌ (1)•  ٱلَّذِى خَلَقَ ٱلْمَوْتَ وَٱلْحَيَوٰةَ لِيَبْلُوَكُمْ أَيُّكُمْ أَحْسَنُ عَمَلًا ۚ وَهُوَ ٱلْعَزِيزُ ٱلْغَفُورُ (2)• ﴾ (الملك الآيات 1-2) }
\end{center}

\end{document}




Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir 02 S01, Ensembles et applications (PDF)

if you find this content helpful, Please consider supporting me with a small donation
إن وجدت هذا المحتوى مفيدا، من فضلك إدعمني بمبلغ بسيط كتبرع

Buy me a coffee — إشتر لي قهوة

PayPal.me • عبر بايبال

Or bank transfer • أو حوالة بنكية

Titulaire : RADOUAN MOSAID
RIB : 230 090 6501953211022000 65
IBAN : MA64 2300 9065 0195 3211 0220 0065
BIC / SWIFT : CIHMMAMC