serie exercices: polynomes - Solution Ex 5

📅 February 10, 2024   |   👁️ Views: 153




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

\documentclass[12pt,a4paper]{article}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage[left=1.00cm, right=1.00cm, top=0.50cm, bottom=1.00cm]{geometry}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{fontspec}
\usepackage{mathrsfs}
\usepackage{enumitem}
\usepackage{multirow}
\usepackage{setspace}
\usepackage{xcolor}
\usepackage[ddmmyyyy]{datetime}

\usepackage{tikz,tkz-tab}
\usetikzlibrary{shapes,decorations.text}

\usepackage{polynom}
\usepackage{draftwatermark}
\usepackage{hyperref}

\polyset{style=D}% A,B,C,D
\setstretch{1.5}

\hypersetup{
    colorlinks=true,
    linkcolor=blue
}
\definecolor{cc}{rgb}{236,0,140}
\newcommand{\mylink}{\href{https://mosaid.xyz/cc}{www.mosaid.xyz}}

\SetWatermarkText{\color{cc!10!white}{www.mosaid.xyz}}
\SetWatermarkLightness{0.95}
\SetWatermarkScale{0.8}

\newcolumntype{C}{>{\Centering\arraybackslash}X}

\newcommand{\stamp}[2]{
\begin{tikzpicture}[remember picture, overlay]
\coordinate (A) at (#1,#2);
\draw[red!50] (A) circle (1.9cm);
% Draw the inner circle
\draw[red!50] (A) circle (1.4cm);
% Draw the curved line
\draw[red!50, decorate, decoration={text along path,
    text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|★MOSAID RADOUAN★},
    text align={align=center}, raise=-3pt}] (A) ++ (180:1.6cm) arc (180:0:1.6cm);
\draw[decorate, decoration={text along path,
    text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|∞★~mosaid.xyz~★∞ },
    text align={align=center}, raise=-6.5pt}] (A) ++ (180:1.53cm) arc (-180:0:1.53cm);
\node[red!75,font=\fontsize{48}{48}\fontspec{DejaVu Sans}\bfseries\selectfont] at (A) {✷};
\end{tikzpicture}
}

\begin{document}
\thispagestyle{empty}
\noindent
\begin{center}
    \begin{tabular}{@{}p{0.22\textwidth}p{0.57\textwidth}p{0.17\textwidth}}
        %\toprule
            \multirow{2}{*}{\parbox{\linewidth}{Prof MOSAID \newline \mylink }}
            & \Centering {Correction Série : Polynomes - Exercice 5} & \hfill  TCS \\
        \bottomrule
    \end{tabular}
\end{center}
\vspace*{0.4cm}
Soit $P(x)=x^3-2x^2-5x+6$\\
{\large\textbullet} 1. Pour montrer que $P(x)$ est divisible par $x-1$. il suffit de vérifier que $P(1)=0$\\
{\large\textbullet} 2. Effectuer la division euclidienne de $P(x)$ par $x-1$:\\
\stamp{3}{-3}
\[ \polylongdiv{x^3-2x^2-5x+6}{x-1} \] \\
Donc $P(x)=(x-1)(x^2-x-6)$~~ et~~ $Q(x)=x^2-x-6$\\
{\large\textbullet} 3. Pour factoriser $Q(x)$ on peut utiliser le discriminant pour trouver les deux racines de $Q(x)$ (dans un cours prochain). On peut aussi remarquer que :
\begin{align*}
    x^2-x-6&=x^2-3x+2x-6\\
           &=x(x-3)+2(x-3)\\
           &=(x-3)(x+2)
\end{align*}
Donc $P(x)=(x-1)(x-3)(x+2)$
\\
{\large\textbullet} 4. Pour résoudre l'inéquation $P(x)<0$ on dress le tableau de signe du produit:\\
\begin{tikzpicture}[scale=1.00]
    \tkzTabInit
    {$x$ /1, $x-1$ /1, $x-3$ /1, $x+2$/1,$P(x)$/1}
    {$-\infty$,$-2$,$1$,$3$,$+\infty$}
    % Signs for (x - 1)
    \tkzTabLine{,-, t, -, z, +, t, +}
    % Signs for (x - 3)
    \tkzTabLine{,-, t, -, t, -, z, +}
    % Signs for (x + 2)
    \tkzTabLine{,-, z, +, t, +, t, +}
    % Final sign for P(x)
    \tkzTabLine{,-, z, +, z, -, z, +}
\end{tikzpicture}\\
Donc l'ensemble des solutions de l'inéquation est : $S=]-\infty,-2[\cup]1;3[$\\

\textcolor{white}{.}\hfill \underline{MOSAID le \today}\\
\textcolor{white}{.}\hfill \mylink
\end{document}



Related Courses, Exams, and Exercises


Solution PDF:

📥 Download serie exercices: polynomes - Solution Ex 5 (PDF)