\documentclass[addpoints, 12pt, a4paper]{exam}%answers,
\usepackage[left=1.5cm,right=0.5cm,top=0cm,bottom=1cm]{geometry} % Set page margins
\usepackage[french]{babel}
\usepackage{fontspec}
\usepackage{calligra} % For calligraphy font
\usepackage[T1]{fontenc}
\usepackage{amsmath, amssymb}
\usepackage{tikz} % For drawing the vertical line
\usetikzlibrary{shapes,decorations.text}
\usepackage{xcolor}
\usepackage{setspace}
\usepackage[ddmmyyyy]{datetime}
\pointname{}
\pointformat{\textbf{\textit{(\thepoints)}}}
% Exam settings
\pointsinmargin
%\colorfillwithlines
%\definecolor{FillWithLinesColor}{gray}{0.8}
\colorfillwithdottedlines
\definecolor{FillWithDottedLinesColor}{gray}{0.7}
\unframedsolutions
\renewcommand{\solutiontitle}{\noindent\textbf{}\enspace}
\SolutionEmphasis{\itshape\small}
\SolutionEmphasis{\color{red}}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
\end{tikzpicture}
}
\newcommand{\stamp}[2]{
\begin{tikzpicture}[remember picture, overlay]
\coordinate (A) at (#1,#2);
\draw[red!50] (A) circle (1.9cm);
% Draw the inner circle
\draw[red!50] (A) circle (1.4cm);
% Draw the curved line
\draw[red!50, decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|★MOSAID RADOUAN★},
text align={align=center}, raise=-3pt}] (A) ++ (180:1.6cm) arc (180:0:1.6cm);
\draw[decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|∞★~mosaid.xyz~★∞ },
text align={align=center}, raise=-6.5pt}] (A) ++ (180:1.53cm) arc (-180:0:1.53cm);
\node[red!75,font=\fontsize{48}{48}\fontspec{DejaVu Sans}\bfseries\selectfont] at (A) {✷};
\end{tikzpicture}
}
% Redefine the points display format in margin
\newcommand{\borders}{%
\tikz[remember picture, overlay, xshift=-0.5cm]{
\draw[gray, thick] (0.5,-1.2) -- (0.5,-13);
\draw[gray, thick] (0.5,-1.2) -- (\textwidth,-1.2);
\node[] at (0.5,-0.25) {\textbf{TCSF}};
\node[magenta] at (1.6,-0.6) {\textbf{www.mosaid.xyz}};
\node[xshift=-2cm] at (\textwidth,-0.25) {\textbf{\today}};
\node[xshift=-2cm] (A) at (\textwidth,-0.9) {\textbf{Prof : MOSAID}};
\node[xshift=-0.5cm] at (0.5\textwidth,-0.5) {\textbf{Contrôl n$^\circ$2/2h} \ccc{B} };
\draw[gray, thick] (A.south west) -- ++(0,0.7) -- ++(3.8,0) ;
\node[magenta] at (0.9\textwidth,-1.4) {\textbf{www.mosaid.xyz}};
}%
}
% Redefine \exo command to avoid spacing issues
\newcommand{\exo}[1]{%
\begin{tikzpicture}
% Node for the text
\node[] (text) at (0,0) {\textbf{#1}};
% Shadow (calculated based on the text width)
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
% Main box (calculated based on the text width)
\draw[fill=white] (text.south west) rectangle (text.north east);
% Text inside the box
\node[] at (text) {\textbf{#1}};
\end{tikzpicture}%
}
%\footer{}{Page \thepage\ of \numpages}{}
\everymath{\displaystyle}
\setstretch{1.2}
\newenvironment{mycontent}{%
\noindent
\borders\\[1.5cm]
\noindent\hspace*{0.2cm}
\exo{Exercice 1: Droite dans le plan \hspace{2mm} (8 pts)}\\
\hspace*{0.2cm}Le plan est rapporté à un repère orthonormé \((O,\vec i, \vec j)\). Soient les points
\(A(2,2)\), \(B(-2,2)\) et \(C(2,3)\)
\begin{questions}
\question
\begin{parts}
\part[2]
Déterminer la nature du triangle ~$ABC$~
\part[1]
Déterminer les coordonnées du point ~$D$~ tel que ~$\overrightarrow{AD}=2\overrightarrow{BC}$~
\end{parts}
\question[2]
Determiner une équation cartésienne de la droite ~$(AB)$~
\question[2]
Determiner une équation cartésienne de la droite ~$(\Delta)$~ parallèle à ~$(AB)$~ passant par ~$C$~
\question[1]
Donner une représentation paramétrique de la droite ~$(BC)$~
\end{questions}
\noindent\hspace*{0.2cm}
\exo{Exercice 2: Calcul et ordre dans ~$\mathbb{R}$ ~(12 pts)}\\
\stamp{16}{0}
\hspace*{0.2cm}\textbf{\underline{Remarque:} Les questions sont indépendantes}
\begin{questions}
\question[3]
Soient \( x\in[-2,3[ \) et \(y\in]2,6]\), \hspace*{0.5cm}encadrer ~$A=\frac{2x+6y+3}{x+5y}$~
\question[3]
Résoudre les équations \(|-3x+7|=-2\) ~et~ \(|x+5|=|3-2x|\)
\question
Soient les ensmbles : \(A=\{x\in\mathbb{R}/|x+3|<1\}\) et \(B=\{x\in\mathbb{R}/|3-x|>1\}\)
\begin{parts}
\part[2]
Determiner les ensmbles ~$A$~ et ~$B$~
\part[2]
Déterminer ~$A\cap B$ et $ A\cup B$~
\end{parts}
\question[2]
Factoriser : \(A=3\sqrt3x^3-8-4x(3x^2-4)\) et \(B=5x^2-(5x-3)^2+\sqrt5x+5x-3\)
\end{questions}
\textcolor{white}{.}\hfill
{\scalebox{2}{\textbf{\textcolor{blue}{\calligra Good Luck!}}}}~~~~~
}% end newenvironment
\begin{document}
\begin{mycontent}\end{mycontent}
\begin{mycontent}\end{mycontent}
\end{document}
0 Comments, Latest
No comments yet. Be the first to Comment