\documentclass[addpoints, 12pt, a4paper]{exam}%answers,
\usepackage[left=1.5cm,right=0.5cm,top=0cm,bottom=1cm]{geometry} % Set page margins
\usepackage[french]{babel}
\usepackage{fontspec}
\usepackage{calligra} % For calligraphy font
\usepackage[T1]{fontenc}
\usepackage{amsmath, amssymb}
\usepackage{tikz} % For drawing the vertical line
\usetikzlibrary{shapes,decorations.text}
\usepackage{xcolor}
\usepackage[ddmmyyyy]{datetime}
\pointname{}
\pointformat{\textbf{\textit{(\thepoints)}}}
% Exam settings
\pointsinmargin
%\colorfillwithlines
%\definecolor{FillWithLinesColor}{gray}{0.8}
\colorfillwithdottedlines
\definecolor{FillWithDottedLinesColor}{gray}{0.7}
\unframedsolutions
\renewcommand{\solutiontitle}{\noindent\textbf{}\enspace}
\SolutionEmphasis{\itshape\small}
\SolutionEmphasis{\color{red}}
\newcommand{\ccc}[1]{
\begin{tikzpicture}[overlay, remember picture]
\node[circle, inner sep=3pt, draw=black, outer sep=0pt] at (0.5,0.2) {#1};
\end{tikzpicture}
}
\newcommand{\stamp}[2]{
\begin{tikzpicture}[remember picture, overlay]
\coordinate (A) at (#1,#2);
\draw[red!50] (A) circle (1.9cm);
% Draw the inner circle
\draw[red!50] (A) circle (1.4cm);
% Draw the curved line
\draw[red!50, decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|★MOSAID RADOUAN★},
text align={align=center}, raise=-3pt}] (A) ++ (180:1.6cm) arc (180:0:1.6cm);
\draw[decorate, decoration={text along path,
text={|\fontspec{DejaVu Sans}\color{red!75}\bfseries|∞★~mosaid.xyz~★∞ },
text align={align=center}, raise=-6.5pt}] (A) ++ (180:1.53cm) arc (-180:0:1.53cm);
\node[red!75,font=\fontsize{48}{48}\fontspec{DejaVu Sans}\bfseries\selectfont] at (A) {✷};
\end{tikzpicture}
}
% Redefine the points display format in margin
\newcommand{\borders}{%
\tikz[remember picture, overlay, xshift=-0.5cm]{
\draw[gray, thick] (0.5,-1.2) -- (0.5,-13);
\draw[gray, thick] (0.5,-1.2) -- (\textwidth,-1.2);
\node[] at (0.5,-0.25) {\textbf{TCSF}};
\node[magenta] at (1.6,-0.6) {\textbf{www.mosaid.xyz}};
\node[xshift=-2cm] at (\textwidth,-0.25) {\textbf{\today}};
\node[xshift=-2cm] (A) at (\textwidth,-0.9) {\textbf{Prof : MOSAID}};
\node[xshift=-0.5cm] at (0.5\textwidth,-0.5) {\textbf{Contrôl n$^\circ$2/2h} \ccc{A} };
\draw[gray, thick] (A.south west) -- ++(0,0.7) -- ++(3.8,0) ;
\node[magenta] at (0.9\textwidth,-1.4) {\textbf{www.mosaid.xyz}};
}%
}
% Redefine \exo command to avoid spacing issues
\newcommand{\exo}[1]{%
\begin{tikzpicture}
% Node for the text
\node[] (text) at (0,0) {\textbf{#1}};
% Shadow (calculated based on the text width)
\fill[black] ([xshift=0.1cm, yshift=-0.1cm]text.south west)
rectangle ([xshift=0.1cm, yshift=-0.1cm]text.north east);
% Main box (calculated based on the text width)
\draw[fill=white] (text.south west) rectangle (text.north east);
% Text inside the box
\node[] at (text) {\textbf{#1}};
\end{tikzpicture}%
}
%\footer{}{Page \thepage\ of \numpages}{}
\newenvironment{mycontent}{%
\noindent
\borders\\[1.5cm]
\noindent\hspace*{0.2cm}
\exo{Exercice 1: Droite dans le plan \hspace{2mm} (9 pts)}\\
\hspace*{0.2cm}Le plan est rapporté à un repère orthonormé \((O,\vec i, \vec j)\). Soient les points
\(A(2,2)\), \(B(1,-1)\) et \(C(2,1)\)
\begin{questions}
\question
\begin{parts}
\part[1]
Déterminer les couples de coordonnées des vecteurs \(\overrightarrow{AB}\) et \(\overrightarrow{BC}\)
\part[1]
Montrer que les points \(A\), \(B\) et \(C\) sont non alignés
\end{parts}
\question[2]
Determiner une équation cartésienne de la droite \(D\left(R(1,2),\vec u (-2,1)\right)\)
\question[2]
Determiner une équation cartésienne de la droite \((HG)\) telle que \(H(2,1)\) et \(G(1,3)\)
\question[1]
Vérifier que les deux droites \((D)\) et \((HG)\) sont sécantes
\question[2]
Determiner leur point d'intersection.
\end{questions}
\noindent\hspace*{0.2cm}
\exo{Exercice 2: Calcul et ordre dans ~$\mathbb{R}$~ \hspace{2mm} (11 pts)}\\
\stamp{16.5}{0.5}
\hspace*{0.2cm}\textbf{\underline{Remarque:} Les questions sont indépendantes}
\begin{questions}
\question[2]
Factoriser : \(A=x^3-8+4(x^2-4)-3x+6\) et \(B=16x^2-(5x-3)^2\)
\question[1]
Determiner \(I\cap J\) et \(I\cup J\) tel que \(I=[-2,3[\) et \(J=]2,6]\)
\question[3]
Résoudre les équations \(|3x-4|=2\) et \(|x-1|=|3-2x|\)
\question[2]
Determiner les ensmbles suivants: \(A=\{x\in\mathbb{R}/|x-3|<1\}\) et \(B=\{x\in\mathbb{R}/|3-x|>2\}\)
\question[3]
Soient \(I=[-2,3[\) et \(J=]2,6]\)\\
Soient ~$x\in I$~ et ~$y\in J$~ encadrer ~$A=x^2+y^2-3x+2y-7$~
\end{questions}
\textcolor{white}{.}\hfill
{\scalebox{3}{\textbf{\textcolor{blue}{\calligra Good Luck!}}}}~~~~~
}% end newenvironment
\begin{document}
\begin{mycontent}\end{mycontent}
\textcolor{white}{.}\\[1cm]
\begin{mycontent}\end{mycontent}
\end{document}
0 Comments, Latest
No comments yet. Be the first to Comment