Devoir 2 S02 en limites, dérivation et vecteurs l'espace v2

📅 February 08, 2024   |   👁️ Views: 171




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.60cm, bottom=0.60cm]{geometry}
\usepackage{tabularx}
\usepackage{array} % added
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{graphicx}
\usepackage{tikz}

\newcolumntype{C}{>{\Centering\arraybackslash}X}

\newenvironment{mycontent}{%
    \noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
        %\toprule
            Prof MOSAID &  Control 2 -- 1BACSF-1  & 2h \\
        \bottomrule
    \end{tabularx}\\
    \textbf{\underline{Exercice 1:(7.5pts)}}\\
    \begin{tabular}{@{}>{\centering\arraybackslash}m{0.05\textwidth}|p{0.92\textwidth}}
        3 & 1)- Calculer les limites suivantes: (utiliser les nombres dérivés)\\
          & \hspace*{0.5cm} $\displaystyle{\lim_{x \to \pi } \frac{cosx+1}{x-\pi} }$ \hspace*{0.2cm};\hspace*{0.2cm}
                $\displaystyle{\lim_{x \to 1} \frac{x^3-\sqrt{x}+2x-2}{x-1} }$ \\
          & \\
      1.5 & 2)-  Calculer le nombre dérivé: $f(x)=\sqrt{x^2+1}$ et $x_0=0$ \\
          & \\
        3 & 3)- Donner l'équation de la tangente au point $x_0=2$ de $f(x) = \frac{x+1}{x-1}$ \hspace*{0.9cm}\\
        \bottomrule
    \end{tabular}\\
    \textbf{\underline{Exercice 2:(8pts)}}\\
    \begin{tabular}{@{}>{\centering\arraybackslash}m{0.05\textwidth}|p{0.92\textwidth}}
        2$\times$4 & Calculer les fonctions dérivées des fonctions:\\
            &\\
            & \hspace*{0.5cm} $f(x)=-3x^3-7x^2+\sqrt{x}-7$ \hspace*{0.2cm};\hspace*{0.2cm} $f(x) = \frac{2x-3}{x^2+1}$ \hspace*{0.2cm};
            \hspace*{0.2cm} $f(x)=\sqrt{x}sin(2x)$ \hspace*{0.2cm};\hspace*{0.2cm} $f(x) = \frac{x^2-3x-1}{x+1}$ \\
        \bottomrule
    \end{tabular}\\
    \textbf{\underline{Exercice 3:(4.5pts)}}\\
    \begin{minipage}{0.60\textwidth}
        \begin{tabular}{@{}>{\centering\arraybackslash}m{0.08\textwidth}|p{0.92\textwidth}}
            & Soit le parallèlogramme $ABCDEFGH$ \\
            3 & 1)- Simplifier les sommes :\\
            & \\
            & \hspace*{0.5cm}$\overrightarrow{HG}+\overrightarrow{CB}$ \hspace*{0.2cm};\hspace*{0.2cm}
            $\overrightarrow{HE}+\overrightarrow{HG}+\overrightarrow{FH}$
            \hspace*{0.2cm};\hspace*{0.2cm}  $\overrightarrow{GH}-\overrightarrow{FG}+\overrightarrow{GC}$\\
            &\\
            1.5 & 2)- Montrer que les vecteurs $\overrightarrow{BE}$, $\overrightarrow{BC}$ et $\overrightarrow{BH}$ \\
            & \hspace*{0.5cm} sont coplanaires. \\
        \end{tabular}
    \end{minipage}%
    \begin{minipage}{0.40\textwidth}
        \centering
        \begin{tikzpicture}[scale=1.90]
        % Define the vertices
        \coordinate (A) at (0.5,0,1);
        \coordinate (B) at (2.5,0,1);
        \coordinate (C) at (2.5,0,0);
        \coordinate (D) at (0.5,0,0);
        \coordinate (E) at (2,3,2);
        \coordinate (I) at (1.25,1.5,1.5);
        \draw (A) -- (B) -- (C); \draw[dashed] (C) -- (D) -- (A);
        \draw (A) -- (E) ;
        \draw (B) -- (E) ;
        \draw (C) -- (E) ;
        \draw[dashed] (D) -- (E) ;
        % Label the vertices
        \foreach \vertex/\position in {A/below left,B/below right,C/above right,D/above right,E/above left}
        {
        \fill (\vertex) node[\position] {$\vertex$};
        }
        \fill (I) circle (1pt) node[above left] {$I$}; % Label the midpoint as "I"
        \end{tikzpicture}
    \end{minipage}
    \vspace{0.5cm}
}

\begin{document}
    \begin{mycontent}\end{mycontent}
    \begin{mycontent}\end{mycontent}
\end{document}

Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir 2 S02 en limites, dérivation et vecteurs l'espace v2 (PDF)