Devoir 2 S02 en limites, dérivation et vecteurs l'espace v1

📅 April 15, 2023   |   👁️ Views: 285




Votre navigateur ne supporte pas les PDFs. Voir le Lien de Téléchargement au dessous .

\documentclass[12pt,a4paper]{article}
\usepackage[left=1.00cm, right=1.00cm, top=0.60cm, bottom=0.60cm]{geometry}
\usepackage{tabularx}
\usepackage{array} % added
\usepackage{booktabs}
\usepackage{ragged2e}
\usepackage{amsmath,amsfonts,amssymb}
\usepackage{graphicx}
\usepackage{tikz}

\newcolumntype{C}{>{\Centering\arraybackslash}X}

\newenvironment{mycontent}{%
    \noindent\begin{tabularx}{\textwidth}{@{} lCr @{}}
        %\toprule
            Prof MOSAID &  Control 2 -- 1BACSF-1  & 2h \\
        \bottomrule
    \end{tabularx}\\
    \textbf{\underline{Exercice 1:(7.5pts)}}\\
    \begin{tabular}{@{}>{\centering\arraybackslash}m{0.05\textwidth}|p{0.92\textwidth}}
        3 & 1)- Calculer les limites suivantes: (utiliser les nombres dérivés)\\
          & \hspace*{0.5cm} $\displaystyle{\lim_{x \to \pi } \frac{cosx+1}{x-\pi} }$ \hspace*{0.2cm};\hspace*{0.2cm}
                $\displaystyle{\lim_{x \to 1} \frac{x^3-\sqrt{x}+2x-2}{x-1} }$ \\
          & \\
      1.5 & 2)-  Calculer le nombre dérivé: $f(x)=x^2+3x-2$ et $x_0=3$ \\
          & \\
        3 & 3)- Etudier la dérivablité au point $x_0=2$
            $\begin{cases}
                f(x) = - \frac{1}{2}x^2+5 \hspace*{0.2cm}; \hspace*{0.2cm} x \le 2 \\
                f(x) = - \frac{x+1}{x-1} \hspace*{0.9cm};\hspace*{0.2cm} x > 2 \\
            \end{cases}$\\
        \bottomrule
    \end{tabular}\\
    \textbf{\underline{Exercice 2:(8pts)}}\\
    \begin{tabular}{@{}>{\centering\arraybackslash}m{0.05\textwidth}|p{0.92\textwidth}}
        2$\times$4 & Calculer les fonctions dérivées des fonctions:\\
            &\\
            & \hspace*{0.5cm} $f(x)=3x^4-7x^2+x-7$ \hspace*{0.2cm};\hspace*{0.2cm} $f(x) = \frac{2x-3}{x+1}$ \hspace*{0.2cm};
                \hspace*{0.2cm} $f(x)=\sqrt{x}cosx$ \hspace*{0.2cm};\hspace*{0.2cm} $f(x) = \frac{x^2-3x-1}{\sqrt{x+1}}$ \\
            &\\
        \bottomrule
    \end{tabular}\\
    \textbf{\underline{Exercice 3:(4.5pts)}}\\
    \begin{minipage}{0.60\textwidth}
        \begin{tabular}{@{}>{\centering\arraybackslash}m{0.08\textwidth}|p{0.92\textwidth}}
            & Soit le parallèlogramme $ABCDEFGH$ \\
            3 & 1)- Simplifier les sommes :\\
            & \\
            & \hspace*{0.5cm}$\overrightarrow{HG}+\overrightarrow{CB}$ \hspace*{0.2cm};\hspace*{0.2cm}
            $\overrightarrow{HE}+\overrightarrow{HG}+\overrightarrow{FH}$
            \hspace*{0.2cm};\hspace*{0.2cm}  $\overrightarrow{GH}-\overrightarrow{FG}+\overrightarrow{GC}$\\
            &\\
            1.5 & 2)- Montrer que les vecteurs $\overrightarrow{BE}$, $\overrightarrow{BC}$ et $\overrightarrow{BH}$ \\
            & \hspace*{0.5cm} sont coplanaires. \\
        \end{tabular}
    \end{minipage}%
    \begin{minipage}{0.40\textwidth}
        \centering
        \begin{tikzpicture}[scale=1.90]
        % Define the vertices
        \coordinate (A) at (0,0,1);
        \coordinate (B) at (3,0,1);
        \coordinate (C) at (3,0,0);
        \coordinate (D) at (0,0,0);
        \coordinate (E) at (0,1,1);
        \coordinate (F) at (3,1,1);
        \coordinate (G) at (3,1,0);
        \coordinate (H) at (0,1,0);
        % Draw the edges of the cube
        \draw (A) -- (B) -- (C); \draw[dashed] (C) -- (D) -- (A);
        \draw (E) -- (F) -- (G) -- (H) -- cycle; % top
        \draw (A) -- (E); \draw (B) -- (F); \draw (C) -- (G); \draw[dashed] (D) -- (H); % vertical
        % Label the vertices
        \foreach \vertex/\position in {A/below left,B/below right,C/above right,D/above right,E/above left,F/above left,G/above right,H/above left}
        {
        \fill (\vertex) node[\position] {$\vertex$};
        }
        \end{tikzpicture}
    \end{minipage}
    \vspace{1.2cm}
    \\
}

\begin{document}
    \begin{mycontent}\end{mycontent}
    \begin{mycontent}\end{mycontent}
\end{document}

Related Courses, Exams, and Exercises


Exam PDF:

📥 Download Devoir 2 S02 en limites, dérivation et vecteurs l'espace v1 (PDF)