المعادلات والمتراجحات والنظمات

المعادلات والمتراجحات من الدرجة الأولى: -I

معادلات من الدرجة الأولى بمجهول واحد:

کل متساویة علی شکل ax+b=0 حیث a و b من $\mathbb R$ و a غیر منعدم و x عدد مجهول تسمی معادلة من الدرجة الأولى بمجهول واحد

قيم الأعداد x التي تحقق ax + b = 0 تسمى حلول أو جذور هذه المعادلة ، ومجموعة هذه القيم تسمى مجموعة S الحلول ، ونرمز لها عادة بالرمز

2x - 3 = 0 و 3x + 4 = 0

خاصية: ax + b = 0 المعادلة \mathbb{R} ولتكن S مجموعة حلولها،

$$S = \left\{ \frac{-b}{a} \right\}$$
 فإن $a \neq 0$ اذا كان -

 $S=\phi$ فإنه : إذا كان b=0 فإنb=0 فإنb=0 فإنa=0 وإذا كان a=0

$$(3x+1)(6x-5)-(3x-2)(3x+1)=0$$
 $(3x+1)(6x-5)-(3x-2)(3x+1)=0$ $(3x+1)(6x-5)-(3x-2)(3x+1)=0$

2) متراجحات من الدرجة الأولى بمجهول واحد:

a و a کل متفاوتة على شكل $ax + b \le 0$ أو $ax + b \ge 0$ أو $ax + b \le 0$ كل متفاوتة على شكل $ax + b \le 0$ أو $ax + b \le 0$ غير منعدم و x عدد مجهول تسمى متر اجحة من الدرجة الأولى بمجهول واحد .

قيم الأعداد χ التي تحقق هذه المتفاوتة تسمى حلو لا لهذه المتر اجحة ، ومجموعة هذه القيم تسمى مجموعة الحلول ، ونرمز لها عادة بالرمز S .

مثال:

حل المتراجحات
$$0 \ge 2x - 4 > 0$$
 و $2x - 4 > 0$ و $-2x - 6 < 0$

نعتبر في
$$\mathbb{R}$$
 المتراجحة $ax + b \ge 0$ ، $ax + b \ge 0$ المتراجحة \mathbb{R} ، $ax + b \le 0$ ، $ax + b \le 0$ العتبر في $S = \begin{bmatrix} -b \\ a \end{bmatrix}$ باذا كان $a > 0$ فإن مجموعة الحلول: $S = \begin{bmatrix} -b \\ a \end{bmatrix}$. $S = \begin{bmatrix} -b \\ a \end{bmatrix}$

$$S=\left[-\infty;rac{-b}{a}
ight]$$
 الذا كان $a<0$ فإن مجموعة الحلول: $S=\left[rac{-b}{a};+\infty
ight]$ الذا كان $a<0$

$$2x + 4 \ge 2(x + 4)$$
 و $2 + \frac{1}{2}x > \frac{x + 2}{2}$ ، $2x - 1 < 4x + 3$: حل في \mathbb{R} المتراجحات التالية

: ax + b إشارة الحداثية (3

نعتبر الحدانية
$$ax + b$$
 حيث $a \neq 0$

$$a$$
 . a فإن إشارة $ax + b$ هي إشارة $a \ge \frac{-b}{a}$

$$a$$
 المارة $ax+b$ المارة a عكس السارة a

ونلخص النتائج في جدول الإشارات التالي:

X	$-\infty$	<u>-b</u>		+∞
ax + b	a إشارة	عکس	a إشارة	

أمثلة

حدد جدولي إشارات الحدانيتين :
$$6 - 4x + 5 = \frac{1}{2}x - 6$$
 ثم حل المتراجحات : $0 \le 6 - 2x + 5 = \frac{1}{2}x - 6$ و $-4x + 5 < 0$ تم ين تطبيقي :

 $(x-1)(2x+4) \le 0$: المتراجحة التالية R حل في

المعادلات والمتراجحات من الدرجة الثانية بمجهول واحد -II

1) المعادلات من الدرجة الثانية بمجهول واحد:

کل متساویة علی شکل a عدد مجهول a عدد مجهول a و a و a عدد مجهول a عدد مجهول تسمى معادلة من الدرجة الثانية بمجهول و احد .

 ax^2+bx+c يسمى مميز المعادلة $ax^2+bx+c=0$ أو مميز ثلاثية الحدود $\Delta=b^2-4ac$

. حدد حقیقی عدد α عدد حقیقی (1

نعتبر المعادلة : $ax^2 + bx + c = 0$ و $A \neq 0$ مميز ها.

.
$$ax^2 + bx + c = 0$$
 ثم حل المعادلة $ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$: بين أن

خاصیات : نعتبر فی \mathbb{R} المعادلة bx+c=0 المعادلة $ax^2+bx+c=0$ بحیث $ax^2+bx+c=0$

.
$$\frac{-b-\sqrt{\Delta}}{2a}$$
 و $\frac{-b+\sqrt{\Delta}}{2a}$ و مختلفین هما حلین مختلفین هما $\Delta>0$ و ازدا کان $\Delta>0$

. $\frac{-b}{2a}$ فإن المعادلة تقبل حل وحيد هو $\Delta = 0$

 \mathbb{R} فإن المعادلة لا تقبل حلا في $\Delta < 0$. أن المعادلة الا تقبل حلا في

حل في 🏗 المعادلات التالية:

$$x^{2}+6x+9=0$$
 $x^{2}-2x+7=0$ $x^{2}-5x+6=0$

2) تعميل ثلاثية الحدود من الدرجة الثانية:

خاصية:

نعتبر ثلاثیة الحدود $ax^2 + bx + c$ بحیث $a \neq 0$ ، و Δ ممیزها ، لدینا

 x_2 و x_1 تقبل حلين مختلفين $ax^2 + bx + c = 0$ و يا مختلفين $\Delta > 0$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
 : ولدينا

 $ax^2 + bx + c = a(x - x_0)^2$: إذا كان $\Delta = 0$ فإن المعادلة تقبل حل وحيد $\Delta = 0$ إذا كان

إذا كان $\Delta < 0$ فإن المعادلة لا تقبل حلا في $\mathbb R$ و لا يمكن تعميل ثلاثية الحدود $ax^2 + bx + c$ إلى جداء حدانيتين

عمل ثلاثيات الحدود التالية إذا أمكن:

$$R(x) = x^2 + 2x + 5$$
 $Q(x) = 2x^2 - 8x + 8$ $P(x) = x^2 - x - 12$

3) مجموع وجداء حلى معادلة من الدرجة الثانية:

: يحققان x_2 و x_1 يحققان $ax^2+bx+c=0$ و يحققان $ax^2+bx+c=0$ إذا كان مميز المعادلة

$$x_1 \cdot x_2 = \frac{c}{a} \quad \text{o} \quad x_1 + x_2 = \frac{-b}{a}$$

- . تحقق أن المعادلة $-2x^2 + x + 6 = 0$ أي تحقق أن المعادلة أي تحقق أ
 - ب) حدد مجموع وجداء هاذين الحلين دون حسابهما .
 - 4) تحديد عددين مجموعهما وجداؤهما معلومان:

خاصية : ليكن p و s عددين حقيقيين ،

$$s^2-4p\geq 0$$
 تقبل حلا إذا وفقط إذا كان $\begin{cases} u+v=s \\ u\cdot v=p \end{cases}$

$$x^2 - sx + p = 0$$
 العددان u و v هما حلا المعادلة

- 1) هل يمكن إيجاد عددين حقيقيين مجموعهما 2 وجداؤهما 5 ؟
 - -6 حدد عددین مجموعهما 1 وجداؤهما -6
 - 5) إشارة ثلاثية الحدود من الدرجة الثانية:

خاصية:

نعتبر ثلاثیة الحدود $P(x) = ax^2 + bx + c$ و Δ ممیزها

إذا كان 0 > 0 فإن إشارة P(x) هي إشارة a خارج الجذرين وعكس إشارة a داخل الجذرين وتنعدم عند الجذر بن.

إذا كان $\Delta = 0$ فإن إشارة P(x) هي إشارة a على A وتنعدم عند الجذر.

 ${\mathbb R}$ المان ${\mathbb A} < 0$ فإن إشارة ${\mathbb R}$ هي إشارة ${\mathbb R}$ على ${\mathbb R}$ ولا تنعدم على

أمثلة:

أدرس إشارات ثلاثيات الحدود التالية:

$$R(x) = x^2 - 2x + 7$$
 $Q(x) = 2x^2 - 8x + 8$ $P(x) = -2x^2 + 5x - 3$

6) المتراجحات من الدرجة الثانية بمجهول واحد:

 $ax^{2}+bx+c<0$ کل متفاوتة على شکل $ax^{2}+bx+c\leq0$ أو $ax^{2}+bx+c\leq0$ أو $a = ax^2 + bx + c > 0$ أو a = a حيث a و a و a من a و a عدد مجهول تسمى متر اجحة من الدرجة الثانية بمجهول واحد . طريقة الحل :

لحل هذه المتراجحة نتبع المراحل التالية:

- $ax^{2} + bx + c = 0$ ize lhas ize lhas -
- . $ax^2 + bx + c$ نستنتج جدول إشارات ثلاثية الحدود
 - نستخرج حلول المتراجحة مباشرة من الجدول.

أمثلة

حل المتر اجحات التالية:

$$2x^2 - 5x + 3 > 0$$
 (2 $2x^2 - 5x + 3 \le 0$ (1

$$x^2 - 6x + 9 \ge 0$$
 (4 $x^2 - 6x + 9 < 0$ (3

$$x^2 - 6x + 9 > 0$$
 (6 $x^2 - 6x + 9 \le 0$ (5

$$x^{2}-3x+9>0$$
 (8 $x^{2}-3x+9\leq0$ (7

III— نظمة معادلتين من الدرجة الأولى بمجهولين:

1) معادلات من الدرجة الأولى بمجهولين:

تعریف:

کل متساویة علی شکل ax + by + c = 0 حیث a و b و a من a و ax + by + c = 0معادلة من الدرجة الأولى بمجهولين.

حل في $\mathbb{R} imes \mathbb{R}$ المعادلة ax + by + c = 0 يعني حدد الأزواج $(x\,;y\,)$ التي تحقق هذه المعادلة .

.
$$2x - 3y + 1 = 0$$
 المعادلة $\mathbb{R} \times \mathbb{R}$ حل في

2) نظمة معادلتين من الدرجة الأولى بمجهولين:

تعریف:

النظمة النظمة
$$(S): \begin{cases} ax + by = c \\ a'x + b'y = c \end{cases}$$
 النظمة معادلتين من الدرجة الأولى بمجهولين.

$$D = \begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' - a'b$$
: محددة النظمة (S) هي العدد الحقيقي الذي نرمز له بالرمز D والمعرف ب

$$D_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = cb' - c'b$$
 : المحددة المرتبطة بـ x هي العدد الحقيقي الذي نرمز له بالرمز D_x والمعرف بـ x

$$D_y = \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} = ac' - a'c:$$
 المحددة المرتبطة ب y هي العدد الحقيقي الذي نرمز له بالرمز D_y والمعرف ب

حل النظمة التالية $\begin{cases} 2x - y = 3 \\ 3x + 2y = 8 \end{cases}$. (S) بطريقة التعويض ثم بطريقة التأليفة الخطية

نعتبر النظمة
$$D \circ (S)$$
: $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$

.
$$\left(\frac{D_x}{D}; \frac{D_y}{D}\right)$$
 فإن : النظمة (S) تقبل حلا وحيدا هو الزوج $D \neq 0$ فإن (1

: اذا كان D=0 هناك حالتان (2

$$(S)\Leftrightarrow ax+by=c$$
 و $D_y=0$ فإن النظمة $D_y=0$ نقبل ما لا نهاية له من الحلول و $D_y=0$ و $D_x=0$ فإن النظمة $D_y=0$ أو $D_y\neq0$ أو $D_y\neq0$ فإن النظمة $D_y\neq0$ أو نا النظمة $D_y\neq0$ أو نا النظمة $D_y\neq0$ أو نا النظمة النظ

$$(S_3): \begin{cases} 2x - 4y = 6 \\ -x + 2y = -3 \end{cases}$$
 (3)
$$(S_2): \begin{cases} 2x - 3y = 15 \\ -4x + 6y = 7 \end{cases}$$
 (2)
$$(S_1): \begin{cases} 2x - y = 3 \\ 3x + 2y = 8 \end{cases}$$
 (1)