1) الجداء السلمي لمتجهتين:

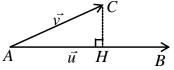
. لتكن $ec{v}$ و $ec{v}$ متجهتين مستقيميتين و A نقطة من المستوى

 $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$: توجد نقطتان وحیدتان \vec{B} و \vec{B}

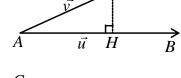
الجداء السلمي للمتجهتين \vec{u} و \vec{v} هو العدد الحقيقي \vec{u} المعرف كما يلي :

 $\vec{u} \cdot \vec{v} = ABAC$ إذا كانت \vec{v} و \vec{v} لهما نفس المنحى فإن

 $\vec{u} \cdot \vec{v} = -ABAC$ إذا كانت \vec{v} و \vec{v} لهما منحيين متعاكسين فإن -



 $\stackrel{>}{B}$



 $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$: توجد نقطتان وحیدتان \vec{B} و \vec{B} بحیث

(AB) المسقط العمو دي للنقطة C على المستقيم التكن H

 \overrightarrow{AH} الجداء السلمي لـ \overrightarrow{u} و \overrightarrow{v} هو الجداء السلمي للمتجهتين المستقيميتين \overrightarrow{AB} و

 $\overrightarrow{AB}.\overrightarrow{AC}$ باحسب ، $\overrightarrow{AB}=3$ بحيث \overrightarrow{B} باحسب ، أحسب \overrightarrow{ABC} ليكن

ملاحظة :

 $\vec{u}\,\vec{u}=AB\,AB=AB^2$ لتكن $\vec{u}=AB\,AB=AB^2$ متجهة غير منعدمة من المستوى $\vec{u} \cdot \vec{u} \geq 0$ اذن لكل متجهة \vec{u} لدينا

تعریف:

 \vec{u}^2 العدد الحقيقي \vec{u} يسمى المربع السلمى للمتجهة \vec{u} و يُر من له بالر من – العدد الحقيقي

العدد $||\vec{u}|| = \sqrt{\vec{u}^2}$: بسمى منظم المتجهة \vec{u} ويُرمز له بالرمز $||\vec{u}||$ ونكتب $||\vec{u}|| = \sqrt{\vec{u}^2}$) الصيغة المثلثية للجداء السلمي :

لتكن $ec{v}$ و $ec{v}$ متجهتين غير منعدمتين من المستوى بحيث : $ec{u}=\overline{AB}$ و $ec{v}$ ، و lpha قياس الزاوية (AB) و H المسقط العمودي لـ C على المستقيم (BAC)

(إذن \overrightarrow{AB} و \overrightarrow{AH} لهما نفس المنحى) فترض أن $\alpha \leq \frac{\pi}{2}$

 $\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.\coslpha$ بین أن $AH=AC.\coslpha$ ثم استنتج أن $AH=AC.\coslpha$

ين نفترض أن $lpha \leq lpha < \overline{AB}$ و \overline{AB} و $\overline{AB} < lpha \leq \pi$ انفترض أن $\alpha \leq \alpha \leq \pi$

 $\overrightarrow{AB}.\overrightarrow{AC} = AB.AC.\cos\alpha$ بين أن $AH = AC.\cos(\pi - \alpha)$ ثم استنتج أن $AH = AC.\cos(\pi - \alpha)$

لتكن \vec{v} و \vec{v} عير منعدمتين من المستوى بحيث : $\vec{u} = \overrightarrow{AB}$ و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} $\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos \alpha$: لاينا (BAC)

 $\cos \alpha = \frac{\vec{u} \, \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$: من الصيغة السابقة إذا كانت الأعداد $\|\vec{u}\|$ و $\|\vec{v}\|$ و $\|\vec{v}\|$ معلومة $\cos \alpha$

مثال:

ABC و AB = 3 و AB = 3 ليكن ABC و ABC(BAC) أحسب قياس الزاوية

3) خاصيات الجداء السلمى:

نشاط:

 $ec{v}$ و $ec{v}$ قياس الزاوية ($ec{BAC}$) نتكن $ec{v}$ و $ec{v}$ $ec{v}$ فياس الزاوية ($ec{BAC}$) انتكن $ec{v}$ $\vec{v} \vec{u}$ مع $\vec{u} \cdot \vec{v}$ قارن

خاصیهٔ 1: لتکن \vec{u} و \vec{v} و \vec{v} ثلاث متجهات من المستوی و \vec{v} عدد حقیقی ، لدینا : $(k \ \vec{u})\vec{v} = \vec{u}.(k \ \vec{v}) = k.(\vec{u} \ \vec{v}) \mathbf{9} \ \vec{u}.(\vec{v} + \vec{w}) = \vec{u} \ \vec{v} + \vec{u} \ \vec{w} \mathbf{9} \ (\vec{u} + \vec{v})\vec{w} = \vec{u} \ \vec{w} + \vec{v} \ \vec{w} \mathbf{9} \ \vec{v} \ \vec{u} = \vec{u} \ \vec{v}$

 $(\vec{u} - \vec{v})(\vec{u} + \vec{v}) = \|\vec{u}\|^2 - \|\vec{v}\|^2$ $\mathbf{g} \cdot (\vec{u} - \vec{v})^2 = \|\vec{u}\|^2 - 2\vec{u}\vec{v} + \|\vec{v}\|^2$ $\mathbf{g} \cdot (\vec{u} + \vec{v})^2 = \|\vec{u}\|^2 + 2\vec{u}\vec{v} + \|\vec{v}\|^2$

 $\vec{u}\,\vec{v}=5$ نعتبر متجهتین \vec{v} و $\vec{v}=3$ و $||\vec{u}||=2$: نعتبر متجهتین $||\vec{v}||=3$

 $(2\vec{u}+\vec{v}).(\vec{u}+\vec{v})$, $3\vec{u}.(\vec{v}-2\vec{u})$: indicate in the state of $(2\vec{u}+\vec{v}).(\vec{u}+\vec{v})$

 $||3\vec{u} + 2\vec{v}||$ و $||\vec{u} - 2\vec{v}||$: ب) أحسب

. \vec{u} \vec{v} و \vec{v} متجهتین متعامدتین ، أحسب أحسب

خاصیة 2: \vec{v} و \vec{v} متجهتین من المستوی ،

 $\vec{u} \perp \vec{v}$ ونكتب $\vec{v} = 0$ ونقط إذا كان $\vec{v} = 0$ ونكتب تكون \vec{v}

 $(\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC})$ المحظ أن $\overrightarrow{BA}.\overrightarrow{BC}$ المحظ أن \overrightarrow{ABC} المحل \overrightarrow{BC} المحل أن المحل المحل أن المحل ا 4) علاقات مترية في مثلث:

(BAC) ليكن ABC مثلثا ، و α قياس الزاوية

 $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB}\overrightarrow{AC}$ بين أن $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ بملاحظة أن $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$

 $BC^2 = AB^2 + AC^2 - 2ABAC\cos\alpha$ وأن $\overrightarrow{ABAC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$ استنتج أن (2

 $\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$: ليكن \overrightarrow{ABC} مثلثا ، لدينا

خاصية 2 (مبرهنة الكاشي):

 $BC^2 = AB^2 + AC^2 - 2ABAC\cos\alpha$: ليكن ABC فياس الزاوية (BAC)، لدينا ABC

ABC=5 و AC=4 و AB=3 ، ليكن ABC=5 و AB=3

ABC أحسب ، ثم استنتج طبيعة المثلث ، \overrightarrow{AB}

مثال 2:

 $ABC=rac{\pi}{2}$ ليكن ABC=A مثلثا، أحسب BC إذا علمت أن AB=2 و

نشاط:

، [BC] مثلثا و I منتصف القطعة ABC

. $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AI}$: نحقق من أن (1

 $2AB^2 + 2AC^2 = 4AI^2 + BC^2$: بين أن (2

خاصية 3 (مبرهنة المتوسط):

 $AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$: ليكن ABC مثلثا و I منتصف القطعة BC ، لدينا

مثال:

AI الحسب، AC=4 و AB=BC=3 الحسب، أن BC=BC=3 الحسب، أحسب ABC=BC=3 الحسب، أحسب

خاصية 4

ليكن ABC مثلثا و I منتصف القطعة [BC] ، و H المسقط العمودي للنقطة ABC على ABC يكون المثلث ABC قائم الزاوية في A إذا وفقط إذا تحقق أحد الشروط التالية : ABC ما ABC

ABAC = AH.BC g $BA^2 = BH.BC$ g $AH^2 = HB.HC$ g BC = 2AI g $AB^2 + AC^2 = BC^2$

(AC) و (BC) مثلثا و ' A و (BC) المساقط العمودية للنقط (AC) و (BC) على المستقيمات (BC) و (AC) و (AC)

. $AA' = AB \sin B$ و $BB' = BC \sin C$ و $CC' = AC \sin A$ بين أن (1

ABC نتكن S مساحة المثلث (2

 $S = \frac{1}{2}ABAC.\sin A = \frac{1}{2}AB.BC.\sin B = \frac{1}{2}BCAC.\sin C$ بين أن (أ

$$\frac{\sin A}{BC} = \frac{\sin B}{AC} = \frac{\sin C}{AB} = \frac{2S}{ABACBC}$$
: ب) استنتج أن

خاصية 5:

$$\frac{\sin A}{BC} = \frac{\sin B}{AC} = \frac{\sin C}{AB} = \frac{2S}{ABAC.BC}$$
 : ليكن ABC مثلثا ، و S مساحته ، لدينا

تمرین تطبیقی:

$$ABC = \sqrt{3}$$
 و $ABC = \frac{\pi}{3}$ و $BAC = \frac{\pi}{6}$ ليكن ABC و كبيت

- AB و BCA الحسب (1
- . AC ثم أحسب مساحة المثلث ABC ثم أحسب (2