عموميات حول الدوال العددية

1) دالة عددية لمتغير حقيقى ومجموعة تعريفها:

نشاط

نعتبر مثلثا ABC قائم الزاوية في A بحيث:

[AB] و AC=3 و AC=3 و AB=8

$$y = CM$$
 و $x = AM$

- x عبير y بدلالة (1
- . [AB] احسب قيمة y إذا كانت النقطة M منتصف القطعة y
- (3) ما هي قيمة y عندما تكون النقطة M : أ) منطبقة مع
 - χ القيم التي يمكن أن يأخذها العدد (4

تعریف:

كل علاقة f تربط كل عنصر x من R بعنصر على الأكثر y من R تسمى دالة عددية للمتغير الحقيقي x. العدد y بالدالة f ونرمز له بالرمز f(x) والعدد x يسمى سابق للعدد y بالدالة f ونرمز له بالرمز f(x) والعدد x يسمى سابق للعدد y بالدالة f ونرمز له بالرمز f(x) والعدد x يسمى سابق للعدد y بالدالة f ونرمز له بالرمز f(x) والعدد x بالدالة f ونرمز له بالرمز f(x) والعدد x بالدالة x بالدالة x بالدالة x ونرمز له بالرمز x بالدالة x با

ب) منطبقة مع B ؟

 D_{f} الأعداد الحقيقية χ التي لها صورة بالدالة f تُكون مجموعة تسمى مجموعة تعريف الدالة χ

$$D_{\mathbf{f}} = \{ x \in \mathbb{R} / \mathbf{f}(x) \in \mathbb{R} \} : \mathcal{D}_{\mathbf{f}} = \{ x \in \mathbb{R} / \mathbf{f}(x) \in \mathbb{R} \}$$

مثال:

. f(0) و f(-1) ، f(2) ، أحسب $f(x) = x^2 - 3x$ و نعتبر الدالة العددية $f(x) = x^2 - 3x$ المعرفة كما يلي

ملاحظة:

لتكن P حدودية ،

الدالة العددية f المعرفة كما يلي P(x): P(x): f تسمى دالة حدودية ومجموعة تعريفها

تمرین تطبیقی:

حدد مجموعة تعريف الدالة العددية f في كل حالة من الحالات التالية ثم أحسب f(3) ، f(3) و f(9) إذا أمكن:

$$f(x) = \sqrt{x-5}$$
 $g(x) = \sqrt{x}$ $f(x) = \frac{12}{x-3}$ $f(x) = \frac{1}{x}$ $f(x) = x^2 - 3x + 1$

2) التمثيل المبياني لدالة عددية :

تعریف:

لتكن f دالة عددية و D_{f} مجموعة تعريفها و O,i;j معلما في المستوى .

مجموعة النقط M(x;y) من المستوى بحيث $x \in D_f$ و $x \in D_f$ تسمى التمثيل المبياني للدالة $x \in D_f$ أو منحنى

 $(C_{\mathrm{f}}) = \{M\left(x\,;\!\mathrm{f}\left(x\,
ight)\right)/x\in D_{\mathrm{f}}\}$ ، $(C_{\mathrm{f}}):$ الدالة f في المعلم $(O,\vec{i}\;;\vec{j})$ ، ونرمز له عادة بالرمز f

مثال

الدالة العددية للمتغير الحقيقي x المعرفة على $\mathbb R$ كما يلي :

: f جدول بعض القيم وصور ها بالدالة f(x) = 2x - 3

Х	0	1	2	3
f(x)	-3	-1	1	3

3) تساوي دالتين:

تعریف:

لتكن f و g دالتين عدديتين و $D_{
m f}$ و $D_{
m g}$ على التوالي مجموعتي تعريفيهما.

 D_{f} نقول إن f تساوي g ونكتب f=g إذا وفقط إذا كان : $D_{\mathrm{f}}=D_{\mathrm{g}}$ و $D_{\mathrm{f}}=D_{\mathrm{g}}$ كان :

أمثلة •

$$g(x) = 1 + |x|$$
 و $f(x) = 1 + \sqrt{x^2}$: حيث $f = g$: بين أن

(علل جوابك) و
$$g(x) = \sqrt{3 + 2x - x^2}$$
 و $f(x) = \sqrt{1 + x} \sqrt{3 - x}$: علل جوابك)

(علل جوابك) ?
$$g(x) = \frac{\sqrt{x-1}}{\sqrt{x}}$$
 و $f(x) = \sqrt{\frac{x-1}{x}}$: علل جوابك) (3

4) الدالة الزوجية - الدالة الفردية - التأويل المبياني:

أ) تعریف: لتكن f دالة عددیة و $D_{\rm f}$ مجموعة تعریفها .

$$f(-x) = f(x)$$
 و $(-x) \in D_f$: D_f من x من x و $f(-x) = f(x)$ و $f(-x) = -f(x)$ و $f(-x) = -f(x)$ و $f(-x) = D_f$: $f(-x) = D_f$: $f(-x) = D_f$ دقول إن الدالة $f(-x) = D_f$ و $f(-x) = D_f$ دقول إن الدالة $f(-x) = D_f$ دو من $f(-x) = D_f$

أدرس زوجية الدالة f في كل حالة من الحالات التالية:

$$f(x) = 2x + 1$$
 $f(x) = \frac{1}{x}$ $f(x) = \frac{1}{x^2 - 9}$ $f(x) = x^2 + 1$ $f(x) = \sqrt{x}$ $f(x) = 2x^3$

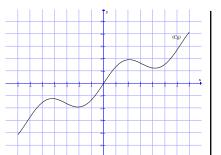
ملاحظة •

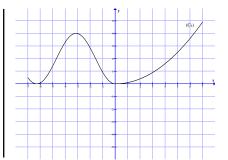
- اذا كانت f دالة عددية غير زوجية فهذا لا يعنى بالضرورة أنها فردية lacksquare
- 🛇 إذا كانت f دالة عددية غير فردية فهذا لا يعني بالضرورة أنها زوجية.
- $(-x) \in D_{\mathrm{f}}:D_{\mathrm{f}}$ نعبر أيضا عن الشرط (لكل x من x من $D_{\mathrm{f}}:D_{\mathrm{f}}:D_{\mathrm{f}}:D_{\mathrm{f}}$ نعبر أيضا عن الشرط (ب- التأويل المبيائي لزوجية دالة:

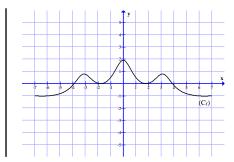
خاصية:

 $(O,\vec{i};\vec{j})$ منحناها في مستوى منسوب إلى معلم متعامد (C_{f}) منحناها في مستوى منسوب الى معلم متعامد . تكون الدالة f زوجية إذا وفقط إذا كان $(C_{
m f})$ متماثل بالنسبة لمحور الأراتيب . يكون الدالة ${
m f}$ فردية إذا وفقط إذا كان ${
m (}C_{
m f}{
m)}$ متماثل بالنسبة لأصل المعلم

حدد مبیانیا زوجیة الدوال g ، f الممثلة أسفله:







5) تغير ات دالة عددية :

أ) منحى تغيرات دالة عددية:

لتكن f دالة عددية و I مجالا ضمن مجموعة تعريفها .

- f(x) < f(y) : لدينا x < y من I بحيث x < y لدينا اذا وفقط إذا كان لكل x < y من x < y من المحيث x < y دينا الكل على الكل على
 - $f(x) \ge f(y)$: الدينا $x \le y$ من I بحيث $x \le y$ لدينا الكال $x \le y$ من $x \le y$ الدينا الكال الكال
- f(x) > f(y) : لدينا x < y تناقصية قطعا على I إذا وفقط إذا كان لكل x < y من I بحيث f(y) > f(y)
 - f(x) = f(y): نكون f(x) = f(y) اإذا وفقط إذا كان لكل f(x) = f(y) الدينا

مثال:

```
. \mathbb{R} الدالة العددية المعرفة كما يلي f(x) = 3x - 2 ، بين أن f تزايدية قطعا على (1
```

.
$$\mathbb{R}$$
 لتكن g الدالة العددية المعرفة كما يلي $f(x) = -2x + 1$ ، بين أن g تناقصية على g

. \mathbb{R} الدالة العددية المعرفة كما يلى : h(x) = 4 ، بين أن h ثابتة على h

ب) الدالة الرتيبة:

تعریف:

نقول إن f رتيبة على مجال I إذا كانت إما تزايدية وإما تناقصية على المجال I. نقول إن f رتيبة قطعا على مجال I إذا كانت إما تزايدية قطعا وإما تناقصية قطعا على المجال I.

ملاحظة

دراسة رتابة أو تغيرات دالة على $D_{\rm f}$ يعني تحديد مجالات I ضمن $D_{\rm f}$ بحيث تكون f رتيبة أو رتيبة قطعا على I . I بعد دراسة رتابة دالة عددية f على مجموعة تعريفها $D_{\rm f}$ يتم تلخيص النتائج في جدول يسمى جدول تغيرات الدالة I . I مثال :

بين أن الدالة f المعرفة كما يلي $x^2: x^2: f(x)$ تزايدية على $x^2: x^2: x^2: x^2$ ثم ضع جدول تغيراتها .

ج) معدل التغير ورتابة دالة عددية:

تعریف:

 $x \neq y$ الكن D_{f} دالة عددية مجموعة تعريفها D_{f} و $x \in \mathcal{Y}$ من الله عددية مجموعة تعريفها

T(x;y) يسمى معدل تغير الدالة f بين y و نرمز له بالرمز $\frac{f(x)-f(y)}{x-y}$ العدد الحقيقي

خاصية:

لتكن f دالة عددية و I مجالاً ضمن مجموعة تعريفها .

 $x \neq y$ اذا کان لکل $x \neq y$ من $x \neq y$ بحیث

I فإن f تزايدية على $T(x;y) \ge 0$

I فإن T(x;y) > 0 تزايدية قطعا على

I فإن $T(x;y) \le 0$

I فإن T(x;y) < 0 فإن T(x;y)

I فإن T(x;y) = 0

أمثلة:

أدرس رتابة الدالة f على D_{f} في كل حالة من الحالات التالية :

f(x) = 2x + 1 (1

f(x) = -5x + 4 (2

f(x) = 3 (3

 $f(x) = \sqrt{x} (4$

د) الرتابة وزوجية دالة:

خاصية:

لتكن f دالة عددية مجموعة تعريفها $D_{
m f}$ متماثلة بالنسبة لصفر،

وليكن I مجالا ضمن \mathbb{R}^+ و I مماثل I بالنسبة لصفر. $D_{\mathrm{f}} \cap \mathbb{R}^+$

* إذا كانت f دالة زوجية فإن:

I' على المحال على المحال على المحال على المحال على المحال المحال على المحال المحال على المحال ال

f تناقصیة (قطعا) علی $f\Leftrightarrow f$ تزایدیة (قطعا) علی f

* إذا كانت f دالة فردية فإن:

I'تزایدیة (قطعا) علی $I\Leftrightarrow I$ تزایدیة (قطعا) علی $f\Leftrightarrow I$

I تناقصية (قطعا) على $f \Leftrightarrow I$ تناقصية (قطعا) على f

تمرين تطبيقي:

. $f(x) = x^4 - 2x^2$: نعتبر الدالة العددية f المعرفة كما يلى

- 1) بين أن f دالة زوجية.
- $[1;+\infty]$ و [0;1] ادرس تغيرات الدالة $[1;+\infty]$ على كل من المجالين الدالة $[0;+\infty]$
 - 3) استنتج جدول تغيرات الدالة f على IR.
 - 6) القيم القصوى القيم الدنيا لدالة عددية:

تعریف:

 $x_0 \in I$ دالة عددية و $X_0 \in I$ مجالا ضمن مجموعة تعريفها ، وليكن التكن

- . I من x من $f(x) \leq f(x_0)$ هو القيمة القصوى للدالة f على I إذا وفقط إذا كان $f(x_0) \leq f(x_0)$ لكل x من
 - . I من $f(x) \ge f(x_0)$ هو القيمة الدنيا للدالة f على I إذا وفقط إذا كان $f(x_0) \ge f(x_0)$ لكل $f(x_0)$
 - . I على f على أو قيمة دنيا للدالة f على f على أو تقيمة دنيا للدالة f على f على أو تقيمة دنيا للدالة f على أو تقيمة دنيا الدالة f دنيا

تمرین تطبیقی:

 $f(x) = 1 + \frac{x}{x^2 + 1}$: يلي بما يلي ي المعرفة على المعرفة على الدالة العددية المعرفة على

- . ${
 m I\!R}$ هي الدالة ${
 m f}$ من أن مجموعة تعريف الدالة
- . \mathbb{R} هي القيمة القصوى لـ f على f . f
 - . \mathbb{R} على f(-1) بين أن f(-1) هي القيمة الدنيا لـ f

ملاحظة:

- و قان $f(\alpha)$ فإن $a < \alpha < b$ حيث $a < \alpha < b$ حيث $a < \alpha < b$ فإن $a < \alpha < b$ فإن $a < \alpha < b$ حيث $a < \alpha < b$ القيمة القصوى للدالة $a < \alpha < b$ على المجال $a < \alpha < b$.
- و $f(\alpha)$ فإن $a < \alpha < b$ حيث $a < \alpha < b$ فإن $a < \alpha < b$ فإن $a < \alpha < b$ وتزايدية على مجال $a < \alpha < b$ حيث $a < \alpha < b$ فإن $a < \alpha < b$ القيمة الدنيا للدالة $a < \alpha < b$ على المجال $a < \alpha < b$.

7) حل بعض المعادلات مبيانيا:

لتكن g و g دالتين عدديتين منحنييهما على التوالي هما (C_g) و (C_g) ، و g مجالاً ضمن مجموعتي تعريفهما ، و g عددا حقيقيا .

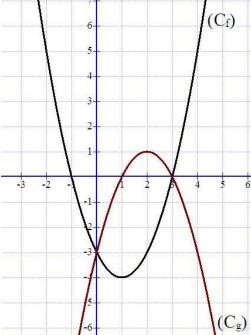
I المجال المعادلة (C_g) مع (C_f) على المجال I، هي أفاصيل نقط تقاطع I على المجال I على المجال .

على على المعادلة y=a على المجال f(x)=a على المجال ، g على المجال ، g على المجال . g على المجال . g

تمرین تطبیقی:

لتكن f و g الدالتين المعرفتين على \mathbf{R} الممثلتين جانبه:

- . g(4) و f(-1) : حدد مبیانیا (1
- (2) حدد مبيانيا الأعداد التي صورتها بالدالة f هي 5.
 - g و f حدد مبیانیا مطاریف الدالتین f و
- . g من خلال التمثيل المبياني ضع جدولي تغيرات f و
 - 5) حل مبيانيا في 🏗 المعادلات التالية:
- g(x) = -3 g(x) = 5 f(x) = g(x)
- : عدد حلول المعادلة : m عدد حلول المعادلة : f(x) = m



- 8) التمثيل المبياني للدالتين sin و cos
 - 1) دراسة الدالة sin:

أ) تعریف: الدالة التي تربط كل عدد حقیقي x بجیبه $\sin x$ تسمی دالة الجیب و نرمز لها ب $\sin x$ و مجموعة تعریفها هي: \mathbf{R} ملاحظة :

 $\sin(x+2k\pi)=\sin x$: نعلم أنه لكل عدد π من π ولكل عدد π من π لدينا .] $-\pi$; π المجال على المجال \mathbb{R} على المجال \mathbb{R} على المجال إذن لدر اسة الدالة من جهة أخرى لدينا لكل عدد x من $\sin(-x) = -\sin x$ ، أي أن الدالة \sin فردية ، $[0;\pi]$ على المجال sin إذن يكفي در اسة الدالة

ب) تغيرات الدالة sin:

Iلتكن (U) دائرة مثلثية مركزها O و أصلها I و $J\left(rac{\pi}{2}
ight)$ و I نقط منها حيث O

J من I النقطة M من I إلى النقطة $(\frac{\pi}{2}$ من 0 إلى $(\frac{\pi}{2})$

الى 1 قيمة $\sin x$ تزداد من 0 إلى 1 فإننا نلاحظ أن قيمة

. $\left[0; \frac{\pi}{2}\right]$ إذن الدالة \sin تزايدية على

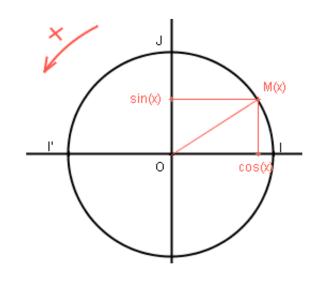
I' عندما تتحرك النقطة M من الحرك النقطة

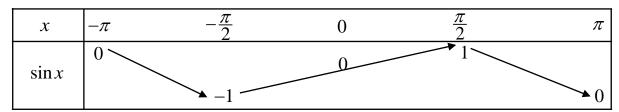
 $(\pi$ إلى عندما يتغير x من $(\pi$ إلى $(\pi$

0 فإننا نلاحظ أن قيمة $\sin x$ في تراجع من

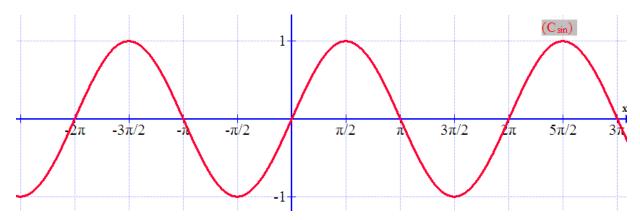
إذن الدالة \sin تناقصية على π وبما أنها فردية ،

فإن جدول تغيراتها على المجال $[-\pi;\pi]$ هو :





ج) منحنى الدالة sin على ج



: cos دراسة الدالة (2

الدالة التي تربط كل عدد حقيقي x بجيب تمامه $\cos x$ تسمى دالة الجيب تمام ونرمز لها ب $\cos x$ ومجموعة

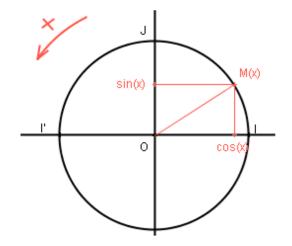
تعريفها هي: R ملاحظة:

 $\cos(x+2k\pi)=\cos x$: نعلم أنه لكل عدد x من \mathbb{R} ولكل عدد k من الدينا

 $[-\pi,\pi]$ إذن لدر اسة الدالة \mathbb{R} على \mathbb{R} يكفي در استها على المجال

من جهة أخرى لدينا لكل عدد x من x من حهة أخرى لدينا لكل عدد x من جهة أخرى لدينا لكل عدد من x

 $[0;\pi]$ المجال \cos على المجال إذن يكفي در الله الدالة



ب) تغيرات الدالة cos :

نتكن (U) دائرة مثلثية مركزها O و أصلها I

 $I'(\pi)$ و $I'(\pi)$ و $I'(\pi)$ و $I'(\pi)$ و $I'(\pi)$ و المنافقة عند المنافقة والمنافقة ول

عندما تتحرك النقطة M من I إلى I' في المنحى الموجب - $(\pi$ الى عندما يتغير x من (π)

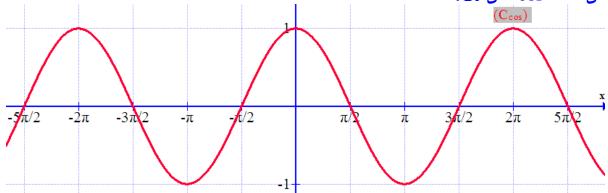
-1 فُإِننَّا نلاحظ أَن قَيمة $\cos x$ في تراجع من 1 إلى

إذن الدالة \cos تناقصية على المجال $[0;\pi]$ وبما أنها زوجية ،

فإن جدول تغيراتها على المجال $[-\pi;\pi]$ هو :

х	$-\pi$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
$\cos x$	-1	0	1	0	

ج) منحنى الدالة cos على R:



9) الشلجم والهذلول:

: $(a \neq 0)$ حيث $x \mapsto ax^2$ التمثيل المبياني وتغيرات الدالة

نشاط

 $g(x) = -\frac{1}{2}x^2$ و $g(x) = \frac{1}{2}x^2$ و $f(x) = x^2$: ويتين المعرفتين كما يلي

1) تحقق أن الدالتين f و g زوجيتين .

(2) أعط جدول تغيرات كل من الدالتين f و

. انشئ في نفس المعلم المتعامد الممنظم $(C_{\rm g})$ و $(C_{\rm g})$ منحنيي الدالتين g و على التوالي .

. ليكن a عددا حقيقيا غير منعدما ، و $(O; \vec{i}; \vec{j})$ معلما متعامدا ممنظما في المستوى . التمثيل المبياني للدالة $ax \mapsto ax^2$ يسمى شلجما رأسه $ax \mapsto ax^2$ التمثيل المبياني للدالة

 $(a \neq 0)$ حيث $x \mapsto ax^2 + bx + c$ ب) التمثيل المبياني وتغيرات الدالة

نشاط

 $f(x) = x^2 + 2x - 2$: لتكن للعددية المعرفة كما يلى الدالة العددية المعرفة كما

- . **R** من $f(x) = (x+1)^2 3$ کا تحقق أن 1
 - 2) أملأ الجدول التالى:

X	-4	-3	-2	-1	0	1	2
f(x)							

، (Δ): x=-1 والمستقيم $\Omega(-1;-3)$ نعتبر النقطة (3

. (C_{f}) والمنحنى (Δ) والمستقيم والمستقيم المعلم المتعامد الممنظم النقطة Ω

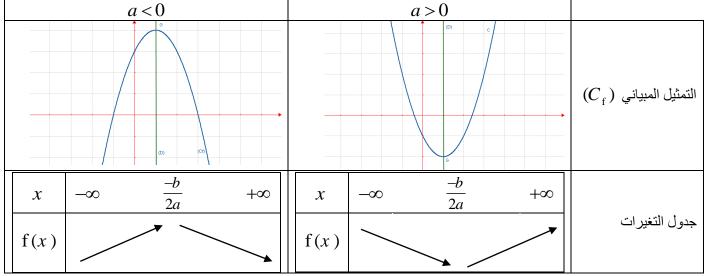
 $x\mapsto x^2$ استنتج مبيانيا تغيرات الدالة f ومطارفها ، ماذا تلاحظ عن (C_f) بالنسبة لمنحنى الدالة f ومطارفها ، ماذا تلاحظ عن f علمة :

 $a \neq 0$ حيث $f(x) = ax^2 + bx + c$: حيث كما يلى $f(x) = ax^2 + bx + c$ ديث

.
$$\mathbb{R}$$
 من $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$ يمكن كتابة $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$

 $x=rac{-b}{2a}$ التمثيل المبياني للدالة f في معلم م م هو شلجم رأسه $\Omega\left(rac{-b}{2a};f\left(rac{-b}{2a}
ight)
ight)$ ومحوره المستقيم ذو المعادلة

. a < 0 وموجه نحو الأعلى إذا كان a > 0 وموجه نحو الأسفل إذا كان



 $-\frac{b}{2a}$ يذا كان a>0 فإن a>0 قيمة دنيا للدالة a>0 وتأخذها عند العدد

. $\frac{-b}{2a}$ عند العدد f قيمة قصوى للدالة f وتأخذها عند العدد f فإن f قيمة قصوى للدالة f

تمرين تطبيقي:

. نعتبر الدالة العددية f المعرفة كما يلي $f(x) = -x^2 + 2x + 3$ و رf(x) منحناها في معلم م

- . أكتب $(C_{\rm f})$ على الشكل القانوني ثم استنتج طبيعة $(C_{\rm f})$ وعناصره المميزة (1
 - . f أنشئ (C_{f}) ثم استنتج مبيانيا تغيرات ثم مطاريف الدالة
 - $(a \neq 0)$ حيث $x \mapsto \frac{a}{x}$: التمثيل المبياني وتغيرات الدالة

نشاط:

$$g(x) = \frac{-1}{x}$$
 و $f(x) = \frac{2}{x}$ يلي و $f(x) = \frac{2}{x}$ و لتكن ألعدديتين المعرفتين كما يلي و ألعدديتين المعرفتين كما يلي كما يلي و ألعدديتين كما يلي كما يلي و ألعدديتين ك

- . $\stackrel{\cdot}{g}$ و و مجموعتي تعریف الدالتین و $D_{_{\mathrm{g}}}$ حدد $D_{_{\mathrm{f}}}$
 - ي تحقق أن الدالتين f و g فرديتين g
 - g f أعط جدول تغيرات كل من الدالتين f و
- . و التوالي و g و f انشئ في نفس المعلم المتعامد الممنظم المنظم ($C_{
 m g}$) و و $C_{
 m f}$

تعریف: لیکن a عددا حقیقیا غیر منعدما ، و $(O;\vec{i};\vec{j})$ معلما متعامدا ممنظما في المستوى .

التمثيل المبياني للدالة $x \mapsto \frac{a}{x}$ يسمى هذلو $x \mapsto 0$ ومقارباه هما محوري المعلم .

$$ad -bc \neq 0; c \neq 0; (a,b) \neq (0;0)$$
 حيث $x \mapsto \frac{ax + b}{cx + d}$ التمثيل المبياني وتغيرات الدالة $\frac{ax + b}{cx + d}$

$$f(x) = \frac{-2x+3}{x-1}$$
: لتكن f الدالة العددية المعرفة كما يلي الدالة العددية المعرفة

- 1) حدد مجموعة تعريف الدالة f
- . $D_{\rm f}$ من x ککل $f(x) = \frac{1}{x-1} 2$ کت (2
 - 3) أملأ الجدول التَّالَي:

x	-2	-1	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	3	4
f(x)									

- . (C_{f}) والمنحنى $(\Delta): y=-2$ و (D): x=1 والمستقيمين $\Omega(1;-2)$ والمنحنى $\Omega(1;-2)$
 - 5) استنتج مبيانيا تغيرات الدالة f
 - $x\mapsto rac{1}{x}$ الدالة بالنسبة لمنحنى الدالة (C_{f}) عن ماذا تلاحظ عن

بصفة عامة : الدالة العددية f المعرفة كما يلي :

. تسمى دالة متخاطة
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0; c \neq 0; (a,b) \neq (0;0)$$
 حيث $f(x) = \frac{ax + b}{cx + d}$

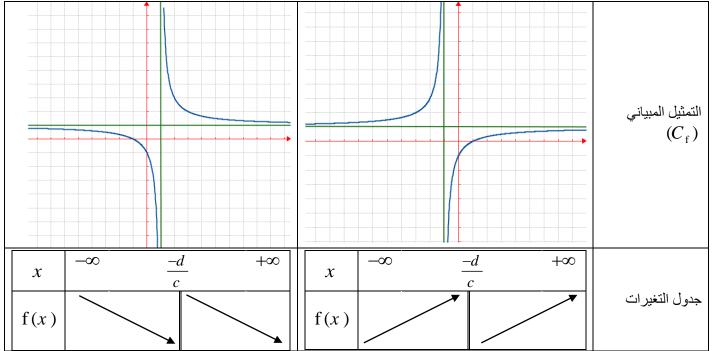
(Δ) و (D) ويقترب من المستقيمين (D) ويقترب من المستقيمين (D) و (Δ) و (Δ) و (Δ) و (Δ) التمثيل المبياني للدالة

. (D):
$$y = \frac{a}{c}$$
 ون أن يقطعهما حيث $x = \frac{-d}{c}$

. $(C_{\scriptscriptstyle \mathrm{f}})$ هذان المستقيمان يسميان مقاربا المنحنى

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} < 0 \qquad \qquad \begin{vmatrix} a & b \\ c & d \end{vmatrix} > 0$$

9/9



تمرين تطبيقي:

. منحناها في معلم م م و $f(x) = \frac{x+1}{x-1}$. المعرفة كما يلي و الدالة العددية المعرفة كما يلي و ال

- . f مجموعة تعريف الدالة D_{f} حدد
- . حدد طبيعة (C_{f}) وعناصره المميزة (2
 - . $(C_{
 m f})$ أنشئ (3
 - 4) استنتج مبيانيا تغيرات الدالة f.