Sara changes her profile picture every 25 days. Her friend Imane changes hers every 31 days. if Imane changed her picture today and Sara changed hers 3 days ago. how many days will pass before they change their profile pictures in the same day?

Sara changed hers

Let n be the number of days

Let $n\%31 = r_1$ the remaining days after the last profile change made by Imane Let $(n-3)\%25 = r_2$ the remaining days after the last profile change made by Sara

$n\%31 = r_1 \Leftrightarrow \exists k \in \mathbb{N} \; ; \; n = 31k + r_1$	we substitute 3 in the equation (2) :
$(n-3)\%25 = r_2 \Leftrightarrow \exists k' \in \mathbb{N} ; n-3 = 25k' + r_2$	31k - 25k' = 31(-12) - 25(-15)
$\Leftrightarrow \begin{cases} r_1 = n - 31k \\ r_2 = n - 3 - 25k' \end{cases} $ (1) when they make the change at the same time, the remaining days after both changes are equal $r_1 = r_2$ thus $n - 31k = n - 3 - 25k'$ $\Leftrightarrow \boxed{31k - 25k' = 3}$ (2)	$\Leftrightarrow \begin{cases} 31(k+12) = 25(k'+15) \\ gcd(31,25) = 1 \end{cases} \Rightarrow 31 k'+15 \\ \Rightarrow k'+15 = 31\alpha \\ \Rightarrow 31(k+12) = 25 \times 31\alpha \\ \Rightarrow k+12 = 25\alpha \\ \Rightarrow k = 25\alpha - 12 \text{ and } k' = 31\alpha - 15 \end{cases}$
Euclid's algorithm: $31 = 25 \times 1 + 6$ $25 = 6 \times 4 + 1$ $\Rightarrow gcd(31, 25) = 1$ $6 = 6 \times 1 + 0$	with $\alpha = 1$: $k = 13$ and $k' = 16$ At the n^{th} day where the last change occurs. we have $r_1 = r_2 = 0$ therefore the equation (1) becomes: $\int n = 21 k = 21 \times 12$
$1 = 25 - 6 \times 4$ $1 = 25 - (31 - 25 \times 1) \times 4$ 1 = 31(-4) + 25(5) 3 = 31(-12) - 25(-15)	$\begin{cases} n = 31k = 31 \times 13 \\ n = 25k' - 3 = 25 \times 16 + 3 \\ \text{finally} \begin{cases} n = 403 \\ n = 403 \end{cases}$

They will change their profile pictures in the same day after 403 days.

By MOSAID