Exercice:

$$f: \mathbb{N}^* \to \mathbb{N}^*$$
Soit l'application
$$n \mapsto E\left(\sum_{k=1}^n \frac{1}{k}\right)$$

Pour Montrer que f est surjective, On procède par les étapes suivantes:

soit
$$p \in \mathbb{N}^*$$
, On pose $A_p = \{n \in \mathbb{N}^* : \sum_{k=1}^n \frac{1}{k} \ge p\}$

- a) Montrer par récurrence $\forall p \in \mathbb{N}^* : \sum_{k=1}^{2^p} \frac{1}{k} \ge p$
- b) Déduire $A_p \neq \emptyset$
- c) Soit n le plus petit élément de A_p
- a) Montrer que $p \le \sum_{k=1}^{n} \frac{1}{k} < p+1$
- b) Déduire f surjective

Voir la solution dans la page suivante

Solution de l'exercice

Définitions et objectif

Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ définie par : $f(n) = E\left(\sum_{k=1}^n \frac{1}{k}\right)$

où E(x) désigne la partie entière de x.

On souhaite montrer que f est surjective.

Pour cela, soit $p \in \mathbb{N}^*$. On pose :

$$A_p = \left\{ n \in \mathbb{N}^* : \sum_{k=1}^n \frac{1}{k} \ge p \right\}$$

Étape a): Montrons que

$$\forall p \in \mathbb{N}^*, \sum_{k=1}^{2^p} \frac{1}{k} \ge 1 + \frac{p}{2}$$

Preuve par récurrence

• Initialisation (p=0):

$$\sum_{k=1}^{2^0} \frac{1}{k} = 1 \ge 1 + \frac{0}{2} = 1 \quad \text{(vrai)}$$

Hérédité :

Supposons l'inégalité vraie au rang p,

c'est-à-dire :
$$\sum_{k=1}^{2^p} \frac{1}{k} \ge 1 + \frac{p}{2}$$

Montrons-la au rang
$$p+1$$
:
$$\sum_{k=1}^{2^{p+1}} \frac{1}{k} = \sum_{k=1}^{2^p} \frac{1}{k} + \sum_{k=2^{p+1}}^{2^{p+1}} \frac{1}{k}$$

La deuxième somme contient 2^p termes,

chacun minoré par $\frac{1}{2p+1}$,

donc:
$$\sum_{k=2^{p+1}}^{2^{p+1}} \frac{1}{k} \ge 2^p \cdot \frac{1}{2^{p+1}} = \frac{1}{2}$$

Ainsi:
$$\sum_{k=1}^{2^{p+1}} \frac{1}{k} \ge \left(1 + \frac{p}{2}\right) + \frac{1}{2} = 1 + \frac{p+1}{2}$$

La récurrence est établie.

Étape b) : Déduisons que $A_p \neq \emptyset$

Pour $p \in \mathbb{N}^*$, choisissons $n = 2^{2p}$.

Alors:
$$\sum_{k=1}^{2^{2p}} \frac{1}{k} \ge 1 + \frac{2p}{2} = 1 + p \ge p$$

Donc $n \in A_p$, ce qui implique $A_p \neq \emptyset$.

Étape c) : Soit n le plus petit élément $\mathbf{de}\ A_n$

Puisque $A_p \subset \mathbb{N}^*$ est non vide et bien ordonné, il admet un plus petit élément, noté n.

Étape d): Montrons que

$$p \le \sum_{k=1}^{n} \frac{1}{k} < p+1$$

- Par définition de A_p , on a $\sum_{k=1}^{n} \frac{1}{k} \ge p$.
- Si n = 1, alors $\sum_{k=1}^{n} \frac{1}{k} = 1$, donc p = 1 et 1 < 2.
- Si n > 1, alors $n 1 \notin A_p$ (car n est le plus petit élément),

$$donc: \sum_{k=1}^{n-1} \frac{1}{k} < p$$

On en déduit :
$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n-1} \frac{1}{k} + \frac{1}{n}$$

Comme
$$n \ge 2$$
, on a $\frac{1}{n} \le \frac{1}{2} < 1$,

d'où:
$$\sum_{k=1}^{n} \frac{1}{k} < p+1$$

Ainsi,
$$p \le \sum_{k=1}^{n} \frac{1}{k} .$$

Étape e) : Déduisons que f est surjective

D'après l'encadrement précédent,

la partie entière de $\sum_{k=1}^{n} \frac{1}{k}$ est p,

soit:
$$f(n) = E\left(\sum_{k=1}^{n} \frac{1}{k}\right) = p$$

Ceci étant valable pour tout $p \in \mathbb{N}^*$, f est surjective.