- $\bullet e^{3x+1} 3e^{2x+1} + e^{x+1} < 0$

- $e^{x^2-x} > 1$
 - $e^{3x+1} 3e^{2x+1} + e^{x+1} = 0$

Calculer f'(x) dans les cas suivants

- $f(x) = e^{7x^2 5x}$ $f(x) = (3x^2 1)e^{2x}$ $f(x) = e^{3x^2 x}$ $f(x) = \ln(2x + e^x)$ $f(x) = e^{x^3 + \cos(x)}$ $f(x) = e^{2x} + \ln(3x) + \sin(x)$ $f(x) = \tan^2(e^x)$ $f(x) = e^{x^2} \cdot \ln(x)$ $f(x) = e^{x^2} \cdot \ln(x)$

- • $\lim_{x \to 0} \frac{e^{3x} - 2e^{2x} + e^x}{x^2}$

Exercice 4: Ratrappage 2008

- I. Soit la fonction g définie sur \mathbb{R} par $g(x) = e^{2x} 2x$
- I.1 Calculer q'(x) pour tout $x \in \mathbb{R}$
- I.2 Montrer que g est croissante sur $[0, +\infty]$ et décroissante sur $]-\infty,0]$
- I.3 En déduir que $\forall x \in \mathbb{R} \quad q(x) > 0$. remarquer que g(0) = 1
- Soit la fonction f définie sur \mathbb{R} par II. $f(x) = \ln(e^{2x} - 2x)$. et Soit \mathscr{C} sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})
- 1.a. Montrer que $\lim_{x \to -\infty} f(x) = +\infty$
- 1.b. Vérifier que $\forall x \in \mathbb{R}^*$ $\frac{f(x)}{x} = \left(\frac{e^{2x}}{x} 2\right) \frac{\ln(e^{2x} 2x)}{e^{2x} 2x}$
- 1.c. Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$. (rappel: $\lim_{x \to +\infty} \frac{\ln t}{t} = 0$)
 1.d. En déduir que \mathscr{C}_f admet, au voisinage de $-\infty$,
- une branche parabolique que l'on doit déterminer la direction
- 2.a. Pour tout $x \in [0, +\infty[$, vérifier que $1 \frac{2x}{e^{2x}} > 0$ et que $2x + \ln(1 - \frac{2x}{e^{2x}}) = f(x)$
- 2.b. En déduir que $\lim_{x\to +\infty} f(x) = +\infty$. (rappel: $\lim_{u\to +\infty} \frac{e^u}{u} = +\infty$)
- 2.c. Montrer que la droite (D): y = 2x est une asymptote oblique de \mathscr{C}_f au voisinage de $+\infty$
- 2.d. Montrer que $\forall x \in [0, +\infty[$ $f(x) 2x \le 0,$ En déduir que \mathscr{C}_f est au dessous $\operatorname{de}(D)$ sur $[0,+\infty[$
- 3.a. Montrer que $\forall x \in \mathbb{R}$ $f'(x) = \frac{e^{2x}}{g(x)}$
- 4. Tracer \mathscr{C}_f et (D) dans le repère (O, \vec{i}, \vec{j}) . (Considerer \mathcal{C}_f admet deux points d'inflexion).

Exercice 5: National 2018

I. Soit q la fonction numérique définie sur \mathbb{R} par $g(x) = e^x - x^2 + 3x - 1$. son tableau des variations est le suivant

$\begin{bmatrix} x \end{bmatrix}$	$-\infty$ $+\infty$
g'(x)	+
g(x)	$-\infty$ \longrightarrow $+\infty$

1. Vérifier que g(0) = 0

- 2. Determiner le signe de g(x) dans les intervalles $]-\infty,0] \text{ et } [0,+\infty[$
- II. Soit la fonction f définie sur \mathbb{R} par f(x) = $(x^2-x)e^{-x}+x$. et Soit \mathscr{C} sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j})
- 1.a Vérifier que $f(x) = \frac{x^2}{e^x} \frac{x}{e^x} + x$ pour tout $x \in \mathbb{R}$ puis montrer que $\lim_{x \to +\infty} f(x) = +\infty$
- 1.b Calculer $\lim_{x\to +\infty} (f(x)-x)$, en déduir que \mathscr{C}_f admet une asymptote (D) d'équation y = x au voisinage de $+\infty$
- 1.c Vérifier que $f(x) = \frac{x^2 x + xe^x}{e^x}$ pour tout $x \in \mathbb{R}$ puis calculer $\lim_{x \to -\infty} f(x)$
- 1.d Montrer que $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$, interprêter
- 2.a Vérifier que f(x) x et $x^2 x$ ont le même signe pour tout $x \in \mathbb{R}$
- 2.b En déduir que \mathscr{C}_f est au dessus de (D) dans les intervalles $[1, +\infty[$ et $]-\infty, 0]$ et au dessous de (D)sur l'intervalle [0, 1]
- 3.a. Montrer que $\forall x \in \mathbb{R}$ $f'(x) = g(x)e^{-x}$
- 3.b. En déduir que f est décroissante sur $]-\infty,0]$ et croissante sur $[0, +\infty[$
- 3.c. Etablir le tableau des variations de la fonction f
- 4.a. Vérifier que $\forall x \in \mathbb{R}$ $f''(x) = (x^2 5x + 4)e^{-x}$
- 4.b. En déduir que \mathcal{C}_f admet deux points d'inflexion d'abscisses 1 et 4 respectivement
- 5. Construir \mathscr{C}_f et (D) dans le repère (O, i, j) en prend (f(4) = 4.2)

Exercice 6:

Un échantillon radioactif perd 10% (ln(0.9)) de sa masse chaque année. Si la masse initiale de l'échantillon est de 100 grammes, déterminez après combien d'années la masse de l'échantillon sera inférieure à 50 grammes. On donne la masse en fonction du temps : $M(t) = M_0 \cdot e^{-kt}$, k est la constante de décroissance.