R. MOSAID

Devoir libre 02

www.mosaid.xyz

(Par : Prof. Said AMJAOUCH, Maths en poche)

Exercice 1

Soit $(u_n)_n$ la suite numérique définie par : $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = \frac{u_n}{3 - 2u_n} \end{cases} \quad \forall n \in \mathbb{N}$

- 1. Calculer u_1 .
- 2. Montrer par récurrence que $\forall n \in \mathbb{N}, 0 < u_n \leq \frac{1}{2}$
- (a) Montrer que $\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} \leq \frac{1}{2}$
 - (b) Déduire la monotonie de $(u_n)_n$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n \le \left(\frac{1}{2}\right)^{n+1}$, puis calculer la limite de $(u_n)_n$.
- (a) Vérifier que pour tout n de \mathbb{N} , $\frac{1}{u_{n+1}} 1 = 3\left(\frac{1}{u_n} 1\right)$.
 - (b) En déduire u_n en fonction de n pour tout n de \mathbb{N} .

Exercice 2

Soit h la fonction définie sur \mathbb{R}^+ par : $h(x) = 4x\sqrt{x} - 3x^2$

- (a) Montrer que : $(\forall x > 0) : h'(x) = 6\sqrt{x}(-\sqrt{x} + 1)$.
 - (b) Dresser le tableau de variations de h.
 - (c) Vérifier que $(\forall x \ge 0)$: $h(x) x = -3x(\sqrt{x} 1)\left(\sqrt{x} \frac{1}{2}\right)$
 - (d) Montrer que $\forall x \in \left[\frac{1}{9}, 1\right] : h(x) x \ge 0$.
- 2. Soit la suite $(U_n)_n$ définie par $\begin{cases} U_{n+1} = h(U_n) & (\forall n \in \mathbb{N}) \\ U_0 = \frac{4}{\pi} \end{cases}$
 - (a) Montrer que pour tout n de $\mathbb{N}: \frac{1}{9} \leq U_n \leq 1$.
 - (b) Montrer que la suite $(U_n)_n$ est croissante.
- 3. Déduire que la suite $(U_n)_n$ est convergente et déterminer sa limite.

Exercice 3

Soit f la fonction numérique définie sur $I = \mathbb{R}$ par : $f(x) = x - 1 + \frac{2x}{\sqrt{x^2 + 1}}$

 (C_f) sa courbe représentative dans un repère orthonormé.

- (a) Montrer que le point I(0, -1) est un centre de symétrie de (C_f) . 1.
 - (b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
 - (c) Montrer que la droite (Δ) : y = x + 1 est une asymptote oblique à (C_f) au voisinage de $+\infty$.
- (a) Calculer f'(x) et dresser le tableau de variations de f. 2.
 - (b) Écrire une équation de la tangente (T) à (C_f) au point I.
 - (c) Tracer (C_f) , (T) et l'asymptote (Δ) .