Exercice 1: 11 pt

Soit f la fonction définie par : $f(x) = x^2 - 2x$.

On note (C_f) sa courbe dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1 Déterminer D_f et calculer limites aux bornes. 1 pt
- 2 Étudier les branches infinies de la courbe (C_f) . 1 pt
- Étudier la position relative de (C_f) et de la droite (Δ) d'équation y=x.
- 4 a Étudier la dérivabilité de f à droite en 0. 1 pt
 - b Calculer f'(x) pour tout $x \in [0, +\infty[$.
 - \bigcirc Dresser le tableau de variation de f.
 - d Construire (Δ) et (\mathcal{C}_f) .
- On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.
 - a Montrer par récurrence que $u_n > 1$ pour tout $n \in \mathbb{N}$.
 - b Montrer que (u_n) est décroissante, en déduire qu'elle converge.
 - \bigcirc Calculer la limite de (u_n) .

Exercice 2: 9pt

On considère la suite (u_n) définie par : $u_0 = 1$ et

$$u_{n+1} = \frac{1}{2}u_n + \frac{1}{3} - \frac{1}{n}$$
 $(n \in \mathbb{N}).$

- 1 Calculer u_1, u_2, u_3 . 1,5 pt
- 2 a Démontrer que pour tout entier naturel $n \ge 4$, $u_n \ge 0$. 1,5 pt
 - **b** En déduire que pour tout $n \geq 5$,

$$u_n \ge \frac{3}{n} - 1$$

- 1,5 pt
- \bullet En déduire la limite de (u_n) . 1,5 pt
- 3 On définit la suite (v_n) pour tout $n \in \mathbb{N}$ par :

$$v_n = \frac{1}{2}u_n - \frac{2}{3} + \frac{1}{2n}.$$

- a Démontrer que (v_n) est une suite géométrique ; préciser sa raison et son premier terme. 1,5 pt
- **b** En déduire que pour tout $n \in \mathbb{N}$:

$$u_n = \frac{5}{4} \left(\frac{1}{3}\right)^n + \frac{2}{3} - \frac{1}{2n}$$
 .1,5pt

© Soit $S_n = u_0 + u_1 + \dots + u_n$. Donner son expression en fonction de n.

Exercice 1: 11 pt

Soit f la fonction définie par : $f(x) = x^2 - 2x$.

On note (C_f) sa courbe dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1 Déterminer D_f et calculer limites aux bornes. 1 pt
- 2 Étudier les branches infinies de la courbe (C_f) . 1 pt
- **3** Étudier la position relative de (C_f) et de la droite (Δ) d'équation y=x.
- 4 (a) Étudier la dérivabilité de f à droite en 0.
 - **b** Calculer f'(x) pour tout $x \in [0, +\infty[$.
 - \bigcirc Dresser le tableau de variation de f.
 - d Construire (Δ) et (\mathcal{C}_f) .
- On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.
 - a Montrer par récurrence que $u_n > 1$ pour tout $n \in \mathbb{N}$.
 - b Montrer que (u_n) est décroissante, en déduire qu'elle converge.
 - \bigcirc Calculer la limite de (u_n) .

Exercice 2: 9pt

On considère la suite (u_n) définie par : $u_0=1$ et

$$u_{n+1} = \frac{1}{2}u_n + \frac{1}{3} - \frac{1}{n}$$
 $(n \in \mathbb{N}).$

- 1 Calculer u_1, u_2, u_3 . 1,5 pt
- 2 a Démontrer que pour tout entier naturel $n \ge 4$, $u_n \ge 0$. 1,5 pt
 - b En déduire que pour tout $n \geq 5$,

$$u_n \ge \frac{3}{n} - 1$$

- 1,5 pt

 C En déduire la limite de (u_n) .

 1,5 pt
- 3 On définit la suite (v_n) pour tout $n \in \mathbb{N}$ par :

$$v_n = \frac{1}{2}u_n - \frac{2}{3} + \frac{1}{2n}.$$

- a Démontrer que (v_n) est une suite géométrique ; préciser sa raison et son premier terme. 1,5 pt
- **b** En déduire que pour tout $n \in \mathbb{N}$:

$$u_n = \frac{5}{4} \left(\frac{1}{3}\right)^n + \frac{2}{3} - \frac{1}{2n}$$
 .1,5pt

© Soit $S_n = u_0 + u_1 + \dots + u_n$. Donner son expression en fonction de n.