R. MOSAID

www.mosaid.xyz

Exercice 1

- I. Soit f la fonction définie sur par : $f(x) = \frac{x}{\sqrt{x} 1}$
- 1. Montrer que : $D_f = [0; 1[\cup]1; +\infty[$
- 2. Calculer $\lim_{x\to 1^-} f(x)$ et $\lim_{x\to 1^+} f(x)$ puis interpréter graphiquement le résultat obtenu.
- 3. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ puis déduire la nature de la branche infinie de (\mathscr{C}) au voisinage de $+\infty$.
- 4. Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$ puis interpréter graphiquement le résultat obtenu.
- (a) Vérifier que : $f(x) x = \frac{x(4-x)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+2)}$ pour tout x de D_f
- (b) Déduire la position relative de la courbe (\mathscr{C}) et la droite (Δ) d'équation y=x. (a) Montrer que : $f'(x) = \frac{x-4}{2(\sqrt{x}-1)^2(\sqrt{x}+2)}$ pour tout x de $]0;1[\cup]1;+\infty[$
 - (b) Dresser le tableau de variations de la fonction f.
- 7. Tracer la courbe (\mathscr{C}) (On admet que $I\left(9;\frac{9}{2}\right)$ est un point d'inflexion de (\mathscr{C})). II. Soit g la restriction de la fonction f sur l'intervalle $I=[4;+\infty[$.
- - 1. Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
 - 2. Tracer la courbe (\mathscr{C}^{-1}) dans le repère $(O; \vec{i}, \vec{j})$.
- III. Soit (U_n) la suite définie par : $U_0 = 5$ et $U_{n+1} = f(U_n)$ pour tout n de \mathbb{N}
 - 1. Montrer que $U_n > 4$ pour tout n de \mathbb{N} .
 - 2. Montrer que la suite (U_n) est décroissante.
 - 3. Montrer que la suite (U_n) est convergente et déterminer sa limite.

Exercice 2

Soit (U_n) la suite définie par : $U_0 = 0$ et $U_{n+1} = \frac{4U_n + 2}{U_n + 3}$ pour tout n de \mathbb{N}

- 1. Vérifier que : $U_{n+1} = 4 \frac{10}{U_n + 3}$ 2. Montrer par récurrence que : $-1 < U_n < 2$ pour tout n de \mathbb{N} 3. (a) Montrer que : $U_{n+1} U_n = \frac{(2 U_n)(U_n + 1)}{U_n + 3}$ pour tout n de \mathbb{N}
 - (b) Montrer que la suite (U_n) est croissante puis déduire que $U_n \ge \frac{2}{3}$ pour tout n de \mathbb{N} .
- (c) Déduire que (U_n) est convergente. 4. On pose : $V_n = \frac{U_n 2}{U_n + 1}$ pour tout n de \mathbb{N}
 - (a) Montrer que (V_n) est une suite géométrique et déterminer sa raison et son premier terme.
 - (b) Exprimer V_n en fonction de n.
 - (c) Montrer que : $U_n = \frac{2 2\left(\frac{2}{5}\right)^n}{1 + 2\left(\frac{2}{5}\right)^n}$ pour tout n de \mathbb{N} puis calculer $\lim_{n \to +\infty} U_n$.
- 5. Calculer la limite de la suite (W_n) définie par $W_n = \sqrt{2 + 3U_n}$ pour tout n de \mathbb{N} .
- (a) Montrer que : $0 < 2 U_{n+1} \le \frac{2}{3}(2 U_n)$ pour tout n de \mathbb{N}
 - (b) Déduire que : $0 < 2 U_n \le 2\left(\frac{2}{3}\right)^n$ pour tout n de \mathbb{N} puis calculer de nouveau $\lim_{n \to +\infty} U_n$.