www.mosaid.xyz

R. MOSAID

Exercice 1

- 1. Soit f la fonction numérique définie par : $\begin{cases} f(x) = \frac{3\sqrt{x^2 + 6x} 2\sqrt[3]{2}}{x 2} & \text{si } x \neq 2 \\ f(2) = \frac{5\sqrt[3]{2}}{12} \end{cases}$
 - Montrer que la fonction f est continue en $x_0 = 2$.
- 2. Soit f la fonction numérique définie sur $\mathbb{R} \{4\}$ par : $\begin{cases} f(x) = x \sqrt[3]{1 x} & \text{si } x < 1 \\ f(x) = \frac{1}{2 \sqrt{x}} & \text{si } x \ge 1 \text{ et } x \ne 4 \end{cases}$
 - (a) Étudier la dérivabilité de f à gauche en 1.
 - (b) Étudier la dérivabilité de f à droite en 1.
 - (c) f est-elle dérivable en 1? Justifier.
- 3. Comparer les deux nombres : $\sqrt[5]{91}$ et $\sqrt[3]{15}$
- 4. Résoudre dans \mathbb{R} l'équation suivante : (E) : $\sqrt[3]{x^2 + 2x + 2} = 1$

Exercice 2

Soit f la fonction numérique définie sur $]1; +\infty[$ par : $f(x) = \frac{1}{x-1} - \sqrt{x}$

- 1. Donner le tableau de variations de la fonction f.
- 2. Montrer que l'équation f(x) = 0 admet une solution unique α dans l'intervalle]1; $+\infty$ [et que $\alpha \in$]1; 2[.
- 3. Vérifier que : $\alpha = \sqrt[3]{2\alpha^2 \alpha + 1}$.
- 4. Donner le signe de f sur $]1; +\infty[$.

Exercice 3

Soit f la fonction définie par : $f(x) = \frac{x}{\sqrt{x^2 - 1}}$

et soit (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1. Vérifier que : $D_f =]-\infty; -1[\cup]1; +\infty[$.
- 2. Montrer que la fonction f est impaire.
- 3. Calculer $\lim_{x\to 1^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- 4. Montrer que pour tout $x \in D_f$: $f'(x) = \frac{-1}{(x^2 1)\sqrt{x^2 1}}$.
- 5. Étudier le signe de f'(x) puis dresser le tableau de variations de f.
- 6. Écrire l'équation de la tangente (T) à la courbe (\mathscr{C}_f) au point d'abscisse 4.
- 7. Soit g la restriction de la fonction f sur $I =]1; +\infty[$.
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
 - (b) Calculer $g\left(\sqrt{2}\right)$ puis montrer que g^{-1} est dérivable en $\sqrt{2}$ et calculer $(g^{-1})'\left(\sqrt{2}\right)$.
 - (c) Déterminer $g^{-1}(x)$ pour tout $x \in J$.