www.mosaid.xyz

visit www.mosaid.xyz for more!

Exercice 1

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{3U_n + 2}{U_n + 2} \end{cases}$

- 1. Montrer par récurrence que $(\forall n \in \mathbb{N}) : U_n > 2$
- (a) Montrer que $(\forall n \in \mathbb{N}) : U_{n+1} U_n = \frac{(1 + U_n)(2 U_n)}{U_n + 2}$
 - (b) Étudier la monotonie de $(U_n)_n$ puis déduire que La suite $(U_n)_n$ est convergente
- (a) Montrer que $(\forall n \in \mathbb{N}) : 0 < U_{n+1} 2 < \frac{1}{4}(U_n 2)$
 - (b) Montrer par récurrence que $(\forall n \in \mathbb{N}) : 0 < U_n 2 \le \left(\frac{1}{4}\right)^n$ puis calculer $\lim U_n$
- 4. On considère la suite $(V_n)_{n\in\mathbb{N}}$ définie par $V_n = \frac{2-U_n}{U_n+1}$
 - (a) Montrer que la suite (V_n) est géométrique de raison $\frac{1}{4}$.
 - (b) Déterminer (V_n) en fonction de n.
 - (c) Déduire (U_n) en fonction de n, puis calculer $\lim U_n$ une autre fois

Exercice 2

Soit f la fonction définie par $f(x) = (x^2 + 1)\sqrt{x + 1} + x$ et (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé

- 1. Vérifier que $D_f = [-1; +\infty[$.
- (a) Calculer $\lim_{x \to +\infty} f(x)$.
 - (b) Déterminer la branche infinie de $\,(\mathscr{C}_f)\,$ au voisinage de $\,+\infty\,$.
- 3. Montrer que $\lim_{x \to -1} \frac{f(x) f(-1)}{x + 1} = +\infty$ puis interpréter géométriquement le résultat.
- (a) Montrer que f est dérivable sur $]-1;+\infty[$
 - (b) Montrer que $(\forall x \in]-1;+\infty[)$: $f'(x) = \frac{(2x+1)^2 + x^2}{2\sqrt{x+1}} + 1$
 - (c) Donner le tableau de variation de f
- 5. Montrer que l'équation f(x) = 0 admet une unique solution $\alpha \in]-1;0[$
- 6. Construire la courbe (\mathscr{C}_f) .
- 7. Montrer que f admet une fonction réciproque f^{-1} définie sur J à déterminer.
- 8. Montrer que f^{-1} est dérivable en 1 puis calculer $(f^{-1})'(1)$.
- 9. Construire $(\mathscr{C}_{f^{-1}})$ dans le même repère

Exercice 3

Les questions sont indépendantes

1. Déterminer les fonctions primitives des fonctions suivantes sur $I=\mathbb{R}$

(a)
$$f(x) = x^3 - x^2 + 3x - 2$$

(b)
$$f(x) = \frac{x+2}{(2x^2+8x+9)^2}$$

2. Calculer $\lim_{n\to+\infty} U_n$ dans les cas suivants

(a)
$$U_n = \frac{2n^3 - 1}{3n^2 + 2n - 1}$$
 (b) $U_n = \frac{\sqrt{2}^n - \sqrt{3}^n}{\sqrt{2}^n + \sqrt{3}^n}$

(b)
$$U_n = \frac{\sqrt{2}^n - \sqrt{3}^n}{\sqrt{2}^n + \sqrt{3}^n}$$