Devoir 02 - S01, Par: Pr Brahim Nahid visit www.mosaid.xyz for more!

17/11/2025

R. MOSAID

Exercice 1

1. Montrer que la solution de l'équation	$\sqrt[3]{1-\sqrt{x}} = \sqrt[6]{x} \text{ est}$	$\frac{1}{4}$ (0.5 pt)
--	--	------------------------

2. Soit
$$h$$
 la fonction définie par :
$$\begin{cases} h(x) = \frac{\sqrt[3]{4x-3}-1}{x-1} & \text{si } x \in \left[\frac{3}{4}, +\infty\right] \setminus \{1\} \\ h(1) = \frac{4}{3} \end{cases}$$

Étudier la continuité de h en x = 1.....(1 pt)

3. Calculer les limites suivantes :
$$\lim_{x \to 1} \frac{x^{2025} - 1}{x - 1}$$
 et $\lim_{x \to 3} \frac{x^3 - 27}{\sqrt[3]{x} - \sqrt[3]{3}}$ (1.5 pt)

4. Calculer g'(x) dans chacun des cas suivants :

$$g(x) = \sin(2x^3 + 4x) + \sin(\pi^2)$$
 et $g(x) = \sqrt[4]{x^3 + 3x + 1}$ (1 pt)

5. Soit $\,f\,$ une fonction définie sur un intervalle ouvert contenant $\,a\,$.

Montrer que : f est dérivable en $a \implies f$ est continue en $a \dots (1 \text{ pt})$

Exercice 2

Soit f la fonction numérique définie par : $\begin{cases} f(x) = x - \sqrt{1-x} & \text{si } x < 1 \\ f(x) = \frac{1}{2-\sqrt{x}} & \text{si } x \geq 1 \end{cases}$

Et soit \mathscr{C} sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 2. Calculer les limites de f aux bornes de D_f(1.25 pt)
- 3. (a) Calculer f'(x) pour tout x appartient à $D_f \{1\}$(1 pt)
 - (b) Dresser le tableau de variation de f.....(0.5 pt)
- 4. (a) Montrer que la courbe $\mathscr C$ coupe l'axe des abscisses en un unique point dont l'abscisse α appartient à l'intervalle]0;1[. (1 pt)

Exercice 3

On considère la fonction f définie sur \mathbb{R}^+ par : $f(x) = x - 2\sqrt{x} + 1$ Et soit \mathscr{C} sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$

1. Vérifier que
$$(\forall x \in \mathbb{R}^+)$$
; $f(x) = (\sqrt{x} - 1)^2$ (0.5 pt)

2BAC.PC/SVT www.mosaid.xyz

Devoir 02 - S01, Par: Pr Brahim Nahid visit www.mosaid.xvz for more!

17/11/2025 R. MOSAID

3. Étudier la continuité de f sur \mathbb{R}^+(0.5 pt)

- 4. (a) Étudier la dérivabilité de f à droite de $x_0=0$, puis interpréter le résultat obtenu. (0.75 pt)
 - (b) Montrer que : $(\forall x \in]0; +\infty[); \quad f'(x) = \frac{\sqrt{x} 1}{\sqrt{x}}$ (1 pt)
 - (c) Étudier les variations de f sur \mathbb{R}^+ , puis donner le tableau de variations de f . (0.75 pt)
 - (d) Déterminer l'équation de (T) la tangente de la courbe $\mathscr C$ au point d'abscisse 4. $(0.75~\mathrm{pt})$
- 5. Soit *g* la restriction de la fonction *f* sur l'intervalle $I = [1; +\infty[$.

 - (b) Dresser le tableau de variation de la fonction g^{-1}(0.25 pt)

 - (e) Déterminer $g^{-1}(x)$ pour tout x de J.....(0.75 pt)

Exercice 4

Soit *h* la fonction définie sur \mathbb{R}^+ par : $h(x) = x^{n+1} - 3x^n + 1$ avec $n \in \mathbb{N}^*$.

- 1. (a) Montrer que h est strictement décroissante sur $\left[0; \frac{3n}{n+1}\right]$ et elle est strictement croissante sur $\left]\frac{3n}{n+1}; +\infty\right[$, puis donner le tableau de variation de h......(1 pt)
 - (b) En déduire que $h\left(\frac{3n}{n+1}\right) < 0$, (remarquer que h(1) = -1)(0.5 pt)