الجداء السلمي في الفضاء وتطبيقاته

الجداء السلمي في الفضاء: -I

 $ec{v}$ لتكن $ec{v}$ و $ec{v}$ متجهتين و $ec{A}$ نقطة من الفضاء

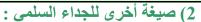
 $\vec{v} = \overrightarrow{AC}$ و $\vec{u} = \overrightarrow{AB}$: توجد نقطتان وحيدتان \vec{B} و \vec{C} من الفضاء بحيث الجداء السلمي للمتجهتين \vec{u} و \vec{v} هو العدد الحقيقي \vec{u} المعرف كما يلي :

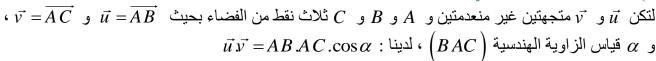
. $\vec{u} \cdot \vec{v} = 0$ فإن $\vec{v} = \vec{0}$ أو $\vec{v} = \vec{0}$ فإن $\vec{v} = \vec{0}$

- إذا كان $\vec{0} \neq \vec{0}$ و $\vec{v} \neq \vec{0}$ فإن النقط $\vec{v} \neq \vec{0}$ و $\vec{u} \neq \vec{0}$ تنتمي إلى مستوى (P). في المستوى (P) ، لتكن H المسقط العمودي للنقطة C على المستقيم (AB) ، لدينا

، إذا كانت \overrightarrow{AB} و \overrightarrow{AB} لهما نفس المنحى \overrightarrow{u}

و \overrightarrow{AH} و \overrightarrow{AH} لهما منحیان متعاکسان ، و \overrightarrow{AH} لهما منحیان متعاکسان ، (2) صیغة أخری للجداء السلمی :





- 3) خاصیات:
- أ) تعامد متجهتين في الفضاء:

خاصية:

$\vec{u} \perp \vec{v}$ ونكتب $\vec{v} = 0$ ونكتب $\vec{v} = \vec{v}$ متعامدتين إذا وفقط إذا كان

ملاحظة و

المتجهة المنعدمة $\widetilde{0}$ عمودية على أية متجهة من الفضاء .

ب) منظم متجهة:

 $\vec{u} = \overrightarrow{AB}$ نتكن \vec{u} متجهة غير منعدمة و \vec{A} و \vec{B} نقطتين من الفضاء بحيث

 $\vec{u} \cdot \vec{u} = ABAB.\cos 0 = AB^2$ لدينا

 $\vec{u} \cdot \vec{u} = 0$ إذن لكل متجهة غير منعدمة \vec{u} لدينا

 $ec{u}^2$: العدد الحقيقي $ec{u}$ يسمى المربع السلمي للمتجهة العدد الحقيقي يسمى المربع السلمي المربع

 $\|\vec{u}\| = \sqrt{\vec{u}^2}$: العدد $\|\vec{u}\|$ ونكتب \vec{u} ويرمز له بالرمز $\|\vec{u}\|$ ونكتب العدد

ملاحظات :

 $\vec{u}^2 = ||\vec{u}||^2 \approx$

 $\vec{u}\,\vec{v} = \|\vec{u}\|.\|\vec{v}\|.\cos\alpha$: فإن $(\vec{u}\,;\vec{v}\,)$ فإن غير منعدمتين و α قياسا للزاوية \vec{v} فإن \vec{v} و \vec{v} متجهتين غير منعدمتين و α

ج) الجداء السلمي والعمليات:

مهما تكن $ec{u}$ و $ec{v}$ متجهات من الفضاء و k عددا حقيقيا فإن :

 $(k\vec{u})\vec{v} = \vec{u}.(k\vec{v}) = k(\vec{u}\vec{v}) \cdot (\vec{u} + \vec{v})\vec{w} = \vec{u}\vec{w} + \vec{v}\vec{w} \cdot \vec{u}.(\vec{v} + \vec{w}) = \vec{u}\vec{v} + \vec{u}\vec{w} \cdot \vec{u}\vec{v} = \vec{v}\vec{u}$

 $(\vec{u} - \vec{v})(\vec{u} + \vec{v}) = \|\vec{u}\|^2 - \|\vec{v}\|^2 \quad \text{o} \quad (\vec{u} - \vec{v})^2 = \|\vec{u}\|^2 - 2\vec{u}\vec{v} + \|\vec{v}\|^2 \quad (\vec{u} + \vec{v})^2 = \|\vec{u}\|^2 + 2\vec{u}\vec{v} + \|\vec{v}\|^2$

 $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ $\|\vec{u} \cdot \vec{v}\| \le \|\vec{u}\| \cdot \|\vec{v}\|$: عليانية -II

1) الأساس والمعلم المتعامدان الممنظمان:

. لتكن $ec{i}$ و $ec{k}$ ثلاث متجهات غير مستوائية و O نقطة من الفضاء

 $ec{j} = \|ec{k}\| = 1$ يكون الأساس $ec{i} \perp ec{i}$ متعامدا ممنظما إذا كان $ec{i} \perp ec{j}$ و $ec{i} \perp ec{i}$ و $ec{i} \perp ec{i}$ و

```
. يكون المعلم (ec{i}\,;ec{j}\,;ec{k}\,) متعامدا ممنظما إذا كان الأساس (ec{i}\,;ec{j}\,;ec{k}\,) متعامدا ممنظما
```

 $(O;\vec{i};\vec{j};\vec{k})$ من الفقرات الفضاء منسوب إلى معلم متعامد ممنظم

2) الصيغة التحليلية للجداء السلمى:

نشاط

 \vec{u} و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} بدلالة \vec{v} و \vec{v} و \vec{v} و \vec{v} و \vec{v} . أحسية :

 $\vec{u}.\vec{v} = xx' + yy' + zz'$: لتكن المتجهتين (x; y; z' و (x; y; z') من الفضاء، لدينا

نتيجة:

 $\vec{u} \perp \vec{v} \Leftrightarrow xx' + yy' + zz' = 0$: من الفضاء، لدينا و $\vec{v}(x';y';z')$ و $\vec{u}(x;y;z)$ من الفضاء، لدينا

 $\vec{u}.\vec{k}=z$ و $\vec{u}.\vec{j}=y$ و $\vec{u}.\vec{i}=x$: لدينا ولاينا والمتجهة والمسافة نقطتين والمسافة وا

نشاط

 $B(x_B;y_B;z_B)$ و $A(x_A;y_A;z_A)$: والنقطتين $\vec{u}(x;y;z)$ و والنقطتين

. z و y و x المسب $||\vec{u}||$ بدلالة x و استنتج $||\vec{u}||$

 z_B و y_B و z_A و و y_A و بدلالة وم x_A ددد إحداثيات المتجهة \overline{AB} ثم استنتج AB بدلالة وم x_A

خاصية:

د لتكن المتجهة $\vec{u}(x;y;z)$ و النقطتين $\vec{u}(x;y;z)$ و النقطتين $\vec{u}(x;y;z)$ و النقطتين $\vec{u}(x;y;z)$ و النقطتين $\vec{u}(x;y;z)$ د ينا $\vec{u}(x;y;z)$ د ينا $\vec{u}(x;y;z)$ و النقطتين $\vec{u}(x;y;z)$ د ينا $\vec{u}(x;y;z)$ د ينا $\vec{u}(x;y;z)$ د ينا $\vec{u}(x;y;z)$

تمرین تطبیقی:

. نعتبر النقط : $A\left(1;1;1
ight)$ و $B\left(0;1;0
ight)$ و $A\left(1;1;1
ight)$ في معلم متعامد ممنظم .

A قائم الزاوية ومتساوي الساقين في A .

الله تطبيقات الجداء السلمي:

1) معادلة ديكارتية لمستوى محدد بنقطة ومتجهة منظمية عليه:

تعریف:

لیکن (P) مستوی ضمن الفضاء و \vec{u} و \vec{v} متجهتین غیر مستقیمیتین من المستوی (P) .

. (P) کل متجهة غیر منعدمة و متعامدة مع $ec{u}$ و مع $ec{v}$ تسمی متجهة منظمیة علی

 $\vec{u}.\vec{n}=\vec{v}.\vec{n}=0$ و $\vec{n}
eq \vec{0}$ و الحان \vec{n} الحان \vec{n} على الحان \vec{n} على الحان الحا

خاصية 1:

التكن \vec{n} متجهة غير منعدمة و A نقطة من الفضاء ،

مجموعة النقط M من الفضاء التي تحقق $\vec{n}=0$ هي المستوى المار من النقطة A و \vec{n} منظمية عليه . \vec{n}

 $M\left(x\,;y\,;z\right)$ ليكن $\vec{n}\left(a;b\,;c\right)$ متجهة منظمية عليه ، لتكن $A\left(x_{A}\,;y_{A}\,;z_{A}\right)$ و $\vec{n}\left(a;b\,;c\right)$ متجهة منظمية عليه ، لتكن لنقطة $\vec{n}\left(a;b\,;c\right)$ نقطة من الفضاء ،

 $a(x-x_A)+b(y-y_A)+c(z-z_A)=0$ يكافئ $\overrightarrow{n}.\overrightarrow{AM}=0$ يكافئ $M\in(P)$ $d=-(ax_A+by_A+cz_A)$ حيث ax+by+cz+d=0

خاصية 2

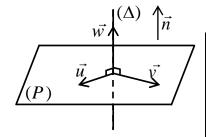
 $\vec{n}\left(a;b;c\right)$ و $A\left(x_{A};y_{A};z_{A}\right)$ و الفضاء منسوب إلى معلم م ، المعادلة الديكارتية للمستوى المار من النقطة $d=-(ax_{A}+by_{A}+cz_{A})$ حيث ax+by+cz+d=0 متجهة منظمية عليه هي على شكل

عكسيا، كل معادلة على شكل ax+by+cz+d=0 هي معادلة ديكارتية $\vec{n}\left(a;b;c\right) \neq (0;0;0)$ هي معادلة ديكارتية لمستوى يقبل $\vec{n}\left(a;b;c\right)$ متجهة منظمية عليه .

تمرین تطبیقی:

- . منظمية عليه $\vec{n}(3;5;-2)$ والمتجهة A(2;-1;3) منظمية عليه (1) حدد معادلة ديكارتية للمستوى
 - (Q): 2x 3y + 4 = 0: حدد نقطة من المستوى (Q) ومتجهة منظمية عليه حيث (2
 - 2) تعامد المستقيمات والمستويات في الفضاء:
 - أ) تعامد مستقيم ومستوى في الفضاء:

خاصية:



لیکن (P) مستوی و (Δ) مستقیم ضمن الفضاء المنسوب إلی معلم متعامد ممنظم ولتکن \vec{u} و \vec{v} متجهة بنظمیة علیه و \vec{w} متجهة موجهة للمستقیم (Δ) ، لدینا :

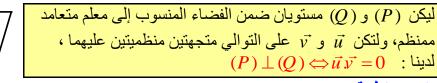
 $(P) \perp (\Delta) \Leftrightarrow (\vec{u} \vec{w} = 0 \quad \vec{v} \vec{w} = 0) \Leftrightarrow (\vec{u} \vec{w} \vec{w} = \vec{n})$ و \vec{w} مستقیمیتین

تمرین تطبیقی

. (P): 2x + 3y - z - 3 = 0 والمستوى $A\left(-1;0;2\right)$ وعتبر في الفضاء المنسوب إلى م م النقطة

- . (P) على على (D) المار من النقطة (D) والعمودي على (D)
 - . (P) و المستوى (D) حدد مثلوث إحداثيات نقطة تقاطع المستقيم (D) .

ب) تعامد مستويين في الفضاء:

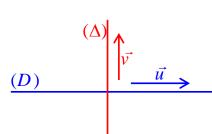


تمرین تطبیقی

في الفضاء المنسوب إلى معلم م م، نعتبر المستويين :

. $(P) \perp (Q)$: بين أن (Q): x - y - z + 2 = 0 و (P): 2x - y + 3z + 1 = 0

ج) تعامد مستقيمين في الفضاء:



 \vec{v}

ليكن (D) و (Δ) مستقيمين ضمن الفضاء المنسوب إلى معلم متعامد ممنظم، ولتكن \vec{u} على التوالي متجهتين موجهتين لهما ، \vec{u} لدينا : $(D) \perp (\Delta) \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

تمرین تطبیقي:

نعتبر في الفضّاء المنسوب إلى معلم م م المستقيمين، بين أن : $(D) \perp (\Delta)$ حيث :

$$(\Delta): \begin{cases} x = 2t \\ y = 1+t \quad (t \in \mathbb{R}) \end{cases}$$

$$z = 5-3t$$

$$(D): \begin{cases} x = 4-2t \\ y = 7+t \quad (t \in \mathbb{R}) \end{cases}$$

$$z = 3-t$$

-IV مسافة نقطة عن مستوى:

تعریف:

ليكن (P) مستوى ضمن الفضاء و A نقطة من الفضاء و H المسقط العمودي للنقطة A على المستوى $d\left(A;(P)\right)=AH$ نسمي مسافة النقطة A عن المستوى (P) المسافة A ونكتب A ونكتب A

نشاط 1:

ليكن (P) مستوى و A نقطة من الفضاء و H المسقط العمودي لـ A على (P) ، لتكن B نقطة من (P) . (P) بين أن \overrightarrow{n} $\overrightarrow{AB} = \overrightarrow{n}$ حيث \overrightarrow{n} متجهة منظمية على (P) .

.
$$AH = \frac{\left| \overrightarrow{n} \overrightarrow{AB} \right|}{\left\| \overrightarrow{n} \right\|}$$
 استنتج أن (2

$$d\left(A;(P)
ight)=rac{\left|ec{n}\,\overrightarrow{AB}
ight|}{\left\|ec{n}
ight\|}$$
 : مستوی و B نقطة منه و $ec{n}$ متجهة منظمية عليه ، و A نقطة من الفضاء : ليكن B مستوى و B نقطة منه و B متجهة منظمية عليه ، و A نقطة من الفضاء : B مستوى و B نقطة منه و و B نقطة من و B نقطة منه و نقطة من و نقطة منه و نقطة منه و نقطة منه و نقطة من و نقطة منه و نقطة منه و نقطة منه و نق

. (P) نعتبر في الفضاء النقطة (P): ax + by + cz + d = 0 والمستوى $A(x_A; y_A; z_A)$ و نقطة من

 $ax_{R} + by_{R} + cz_{R} = -d$: نضع (B($x_{R}; y_{R}; z_{R}$) نضع (1

. z_A و y_A و z_A و و و و و ه و مو ، $\vec{n}(a;b;c)$ حيث (2 حيث $\vec{n}(a;b;c)$

. $d(A;(P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + a^2}}$: استنتج أن

$$A\left(x_{A};y_{A};z_{A}\right)$$
 والنقطة $(P):ax+by+cz+d=0$ في الفضاء المنسوب إلى معلم م نعتبر المستوى $d\left(A;(P)\right)=\dfrac{\left|ax_{A}+by_{A}+cz_{A}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$: هي (P) هي (P) هي المستوى (P)

مثال٠

 $d\left(A;(P)\right)$ فعتبر المستوى $A\left(4;3;-1\right)$ و النقطة (P):2x+3y+6z+3=0 نعتبر المستوى -V در اسة تحليلية للفلكة -V

 $(o;\vec{i};\vec{j};\vec{k})$ معلم متعامد ممنظم الفقرات المتبقية الفضاء منسوب إلى معلم متعامد ممنظم

تعریف: Ω نقطة من الفضاء و R عدد حقیقي موجب قطعا ، الفلكة $S(\Omega;R)$ التي مركزها Ω وشعاعها Ω هي مجموعة النقط M من الفضاء التي تحقق $M=\Omega$. (1) معادلة ديكارتية لفلكة معرفة بمركزها وشعاعها $M=\Omega$

. R وشعاعها $\Omega(a;b;c)$ بعتبر الفلكة (S) التي مركزها

ما هو الشرط اللازم والكافي لكي تنتمي النقطة M(x;y;z) إلى الفلكة M(x;y;z) ؟

 $(x-a)^2+(y-b)^2+(z-c)^2=R^2$ معادلة الفلكة التي مركزها $\Omega(a;b;c)$ وشعاعها $\Omega(a;b;c)$ $d = a^2 + b^2 + c^2 - R^2$ حيث $x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$: وتكتب أيضا على شكل

. $R=\sqrt{3}$ وشعاعها $\Omega(1;2;-1)$ دد معادلة ديكارتية للفلكة (S) التي مركزها

2) معادلة ديكارتية لفلكة معرفة بأحد أقطارها:

خاصية: لتكن A و B نقطتين مختلفتين من الفضياء،

مجموعة النقط M من الفضاء التي تحقق $\overrightarrow{BM}=0$ هي الفلكة التي أحد أقطارها M .

. B(1;-5;4) و A(1;3;0) حيث A(1;3;0) حيد معادلة ديكارتية للفلكة A(1;-5;4) التي أحد أقطار ها

 $x^2 + y^2 + z^2 + ax + by + cz + d = 0$ بحيث M(x; y; z) بحيث W(x; y; z) دراسة مجموعة النقط

$$(E) = \{M(x,y;z)/x^2 + y^2 + z^2 + ax + by + cz + d = 0\}$$
 : نعتبر المجموعة $a;b;c;d \in \mathbb{R}$ ديث

: نضع
$$M\left(x\,,y\,;z\,\right)$$
 نصع نصع من الفضاء ، لاينا ، $\Omega\left(\frac{-a}{2};\frac{-b}{2};\frac{-c}{2}\right)$

$$M(x,y;z) \in (E) \Leftrightarrow x^{2} + y^{2} + z^{2} + ax + by + cz + d = 0$$

$$\Leftrightarrow x^{2} + 2\frac{a}{2}x + \frac{a^{2}}{4} + y^{2} + 2\frac{b}{2}y + \frac{b^{2}}{4} + z^{2} + 2\frac{c}{2}z + \frac{c^{2}}{4} + d = \frac{a^{2} + b^{2} + c^{2}}{4}$$

$$\Leftrightarrow \Omega M^2 = \frac{1}{4}(a^2 + b^2 + c^2 - 4d) \quad (*)$$

العلاقة (*) تحيلنا على ثلاث حالات مختلفة هي:

<1-

تمرین تطبیقی:

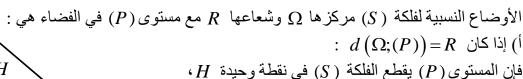
حدد المجموعات:

$$(E_1) = \left\{ M(x,y;z) / x^2 + y^2 + z^2 - x + 3y - \frac{3}{2} = 0 \right\}$$

$$(E_2) = \left\{ M(x,y;z) / x^2 + y^2 + z^2 - 2x + 4y + 2z + 7 = 0 \right\}$$

$$(E_3) = \left\{ M(x,y;z) / x^2 + y^2 + z^2 - x + 2y - z + \frac{3}{2} = 0 \right\}$$

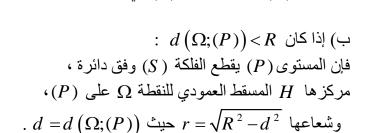
6- الأوضاع النسبية لمستوى وفلكة:



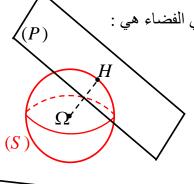
هي المسقط العمودي للنقطة Ω على (P)،

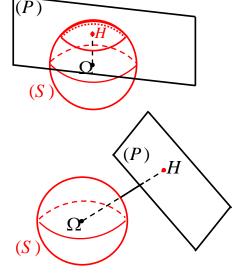
أي : $\{H\} = (S) \cap (S)$ ، وفي هذه الحالة نقول :

المستوى (P) مماس للفلكة (S) في النقطة (S)



$$d\left(\Omega;(P)
ight)>R$$
 : $d\left(\Omega;(P)
ight)>R$ فإن المستوى P لا يقطع الفلكة P ، P ، P . P .





تمرين تطبيقي:

R=5 نعتبر الفلكة (S^{\dagger}) التي مركزها $\Omega(1;-1;0)$ وشعاعها

حدد الوضع النسبي للمستوى (P) بالنسبة للفلكة (S) ثم حدد تقاطعهما في كل حالة من الحالات التالية:

$$(P): x - 2y + 2z + 6 = 0$$
 (1)

$$(P):-4x+8y+z-42=0$$
 (2)

$$(P): x - 4y + 2\sqrt{2}z + 20 = 0$$
 (3)

3) معادلة ديكارتية لمستوى مماس لفلكة في نقطة معلومة:

خاصية: لتكن (S) فلكة مركزها Ω وشعاعها R و A نقطة من الفلكة (S).

يوجد مستوى وحيد (P) مماس للفلكة (S) في A وهو المستوى المار من A والمتجهة $\overline{\Omega A}$ منظمية عليه .

. $R=\sqrt{3}$ وشعاعها $\Omega(1;2;-1)$ التي مركزها (S) التي مركزها A(2;1;-2) وشعاعها . A ثم حدد معادلة المستوى المماس للفلكة (S) في النقطة $A \in (S)$