www.mosaid.xyz

Exercice 1

1 – Dans chacun des cas ci-dessous, étudier la continuité des fonctions suivantes au point a :

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 5} - 3}{\sqrt{x + 2} - 2} & \text{si } x > -2\\ \frac{x^2 + 5x + 6}{x^3 + 8}, & \text{si } x < -2, \quad a = -2 \end{cases} \quad \text{et} \quad f(x) = \begin{cases} \frac{x^3 - 2x^2 - x + 2}{x^2 - 4}, & \text{si } x < 2\\ \frac{x - \sqrt[3]{x(x - 2)} - 2}{x - 2}, & \text{si } x > 2, \quad a = 2\\ \frac{3}{4}, & \text{si } x = 2 \end{cases}$$

2 – Déterminer la valeur du réel m pour que la fonction f ci aprè soit continue en x=1.

$$f(x) = \begin{cases} \frac{\sin(\pi x)}{x - 1}, & \text{si } x \neq 1\\ 2m, & \text{si } x = 1 \end{cases}$$

3 – Étudier la continuité de la fonction g ci après sur \mathbb{R} .

$$g(x) = \begin{cases} \frac{x^3 - 2x^2 - x + 2}{x^2 - 1}, & \text{si } x > 1\\ 2x^2 + \sqrt{5 - x}, & \text{si } x \le 1 \end{cases}$$

Exercice 2

Soit f la fonction définie par $f(x) = 4x^3 + 3x - 1$.

- $1 \text{Étudier les variations de la fonction } f \text{ sur } \mathbb{R}.$
- **2** Montrer que l'équation f(x) = 0 admet une solution unique α sur \mathbb{R} et que $0 < \alpha < 1$.
- 3 Donnez un encadrement du nombre α d'amplitude 0.25.
- **4** Donner le signe de f(x) sur \mathbb{R} .

Exercice 3

Soit f une fonction continue sur un intervalle [a, b] telle que f(a) < ab et $f(b) > b^2$. Montrer que $\exists c \in [a, b]$ tel que f(c) = bc.

Exercice 4

1. Montrer dans chacun des cas ci-dessous que f, définie sur I, admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer :

•
$$f(x) = -x^2 + x + 1$$
, $I =]-\infty, \frac{1}{2}]$

•
$$f(x) = \frac{4x}{x^2 + 4}$$
, $I = [2, +\infty[$

•
$$f(x) = x^3 + 3x^2 + x$$
, $I = \mathbb{R}$

•
$$f(x) = \sqrt{2x - 2} - x + 1$$
, $I = [\frac{3}{2}, +\infty[$

Exercice 5

Soit f la fonction définie par $f(x) = 2x^3 - 1$.

- 1 Montrer que l'équation f(x) = -x admet une solution unique α dans l'intervalle $[0, +\infty[$.
- 2 Justifier que $0 < \alpha < 1$. Puis donnez un encadrement du nombre α d'amplitude 10^{-2} .
- $3 \text{Montrer que } \alpha = \sqrt{\frac{-1}{2} + \frac{1}{2\alpha}}.$

4 − Résoudre dans $]0, +\infty[$ l'inéquation $x < \frac{1}{1+2x^2}$.

- **5** Montrer que g, la restriction de f sur $I =]-\infty, \alpha]$, admet une fonction réciproque définie sur un intervalle J à déterminer.
- **6** Calculer $g^{-1}(] 3; \alpha[)$.

7 - Trouver $q^{-1}(x)$ pour tout $x \in J$.

Exercice 6

1 - Simplifier les expressions suivantes : $A = \frac{(27)^{\frac{2}{9}} \times (81)^{\frac{1}{4}} \times (9)^{\frac{5}{2}}}{(27)^{\frac{17}{3}}}$; $B = \frac{\sqrt[4]{32} \times \sqrt[6]{27} \times \sqrt{108}}{\sqrt[4]{3}}$; $A = \frac{\sqrt[4]{32} \times \sqrt[6]{27} \times \sqrt{108}}{\sqrt[4]{32}}$; $A = \frac{\sqrt[4]{32} \times \sqrt[4]{32} \times \sqrt[4]{32}}{\sqrt[4]{32}}$; $A = \frac{\sqrt[4]{32} \times \sqrt[4]{32} \times \sqrt[4]{32}}{\sqrt[4]{32} \times \sqrt[4]{32}}$; $A = \frac{\sqrt[4]{32} \times \sqrt[4]{32} \times \sqrt[4]{32}}{\sqrt[4]{32}}$; $A = \frac{\sqrt[4]{32} \times \sqrt[4]{3$

3 — Calculer les limites suivantes

• $\lim_{x \to 9} \frac{\sqrt[3]{x-1-2}}{x-9}$ • $\lim_{x \to +\infty} \frac{\sqrt[3]{x+1} - \sqrt{x+1}}{\sqrt[4]{x+1} - \sqrt[3]{x+1}}$ • $\lim_{x \to 1} \sqrt[3]{8x^3+1} - 2x$ • $\lim_{x \to 3} \sqrt[3]{x^3+x^2+1} - 5x$