Exercice 1 (17 points)

Soit f une fonction numérique définie par : $\begin{cases} f(x)=x-2\sqrt{x}+2, & x>0\\ f(0)=2\\ f(x)=x^3+2x+2, & x\leq 0 \end{cases}$

- 1. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 2. Étudier la continuité de f en 0.
- 3. (a) Étudier la dérivabilité de f en 0 à droite et interpréter géométriquement le résultat obtenu.
 - (b) Étudier la dérivabilité de f en 0 à gauche et interpréter géométriquement le résultat obtenu.
- 4. (a) Étudier la dérivabilité de f sur $]0, +\infty[$ puis vérifier que : $(\forall x \in]0, +\infty[); \quad f'(x) = \frac{x-1}{\sqrt{x}(\sqrt{x}+1)}$
 - (b) Étudier la dérivabilité de f sur $]-\infty,0]$ puis vérifier que : $(\forall x \in]-\infty,0]$); $f'(x)=3x^2+2$
 - (c) Montrer que f est strictement croissante sur $[1, +\infty[$ et sur $]-\infty, 0]$ et elle est strictement décroissante sur [0, 1].
 - (d) Donner le tableau de variations de f.
- 5. Donner l'équation de la tangente (T) à la courbe de f au point d'abscisse -1.
- 6. (a) Montrer que l'équation f(x) = 0 admet une solution unique α dans]-1,0[.
 - (b) Calculer $f\left(-\frac{1}{2}\right)$ en déduire un autre encadrement de la solution α .
- 7. (a) Étudier le signe de f(x) pour tout x de \mathbb{R} .
 - (b) En déduire que $\forall x \in [0, +\infty[; 2\sqrt{x} \le x + 2.$
- 8. Soit g une fonction numérique définie sur $]-\infty,0]$ par : g(x)=f(x)
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur l'intervalle I à déterminer.
 - (b) Montrer que g^{-1} est dérivable en -1.
 - (c) Déterminer $(g^{-1})'(-1)$.
 - (d) Donner le tableau de variations de g^{-1} .
- 9. On considère la fonction numérique h définie sur \mathbb{R} par : $\begin{cases} h(x) = \frac{x^3 + 2x + 2}{x \alpha}, & x \neq \alpha \\ h(\alpha) = 3\alpha^2 + 2 \end{cases}$

Montrer que h est continue en α (où α est le réel donné dans la question 6).

Exercice 2 (3 points)

Calculer f'(x) pour tout $x \in I$. On donnera f'(x) sous la forme réduite dans les cas suivants :

1.
$$f(x) = (\sin(x) + 3)^5$$
, $I = \mathbb{R}$

2.
$$f(x) = x - 7 + \frac{2}{2x+1}$$
, $I = \left] \frac{-1}{2}, +\infty \right[$

3.
$$f(x) = x\sqrt{2x+3}$$
, $I = \left[\frac{-3}{2}, +\infty\right[$