R. MOSAID

Exercice 1

- 1. Simplifier le nombre : $A = \frac{\sqrt[3]{8^2} \times \sqrt[3]{\sqrt{2}}}{\sqrt[4]{4} \times \sqrt{16}}$.
- 2. Mettre en ordre les nombres suivants : $\sqrt{3}$, $\sqrt[3]{5}$, $\sqrt[12]{700}$
- 3. Calculer les limites suivantes : $\lim_{x\to 1} \frac{\sqrt[3]{x+7}-2}{x-1}$; $\lim_{x\to +\infty} \sqrt[3]{x^3+x^2-x-3}-2x$
- 4. Résoudre dans $\mathbb{R}: (E): \sqrt[3]{x^2 1} = 2$; $(I): \sqrt[4]{x 2} < 1$.

Exercice 2

Soit *g* la fonction définie sur \mathbb{R} par : $g(x) = -x^3 - 3x - 1$

- 1. Montrer que la fonction g est strictement décroissante sur \mathbb{R} .
- 2. (a) Montrer que l'équation g(x) = 0 admet une solution unique $\alpha \in \mathbb{R}$.
 - (b) Vérifier que : $-1 < \alpha < 0$
 - (c) Montrer que : $\alpha = -\sqrt[3]{-3\alpha 1}$
- 3. Déterminer le signe de g(x) sur \mathbb{R} .
- 4. On considère la fonction h définie sur \mathbb{R} par : $\begin{cases} h(x) = g(x) \alpha & ; \quad x \leq \alpha \\ h(x) = \sqrt[3]{-3x 1} & ; \quad x > \alpha \end{cases}$

Montrer que h est continue en α .

Exercice 3

Soit f une fonction numérique définie par : $f(x) = x + 3 - 2\sqrt{x - 2}$

- 1. Déterminer D_f et calculer $\lim_{x \to +\infty} f(x)$
- 2. Montrer que la fonction f est continue sur $[2, +\infty[$
- 3. Étudier la dérivabilité de f à droite en 2; puis interpréter le résultat géométriquement
- 4. (a) Montrer que : $f'(x) = \frac{x-3}{\sqrt{x-2}(\sqrt{x-2}+1)} \quad \forall x \in]2, +\infty[$
 - (b) Dresser le tableau des variations de la fonction f
- 5. On considère la fonction g la restriction de f sur l'intervalle $I = [3, +\infty[$
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur J à déterminer
 - (b) En déduire les variations de la fonction g⁻¹
 - (c) Calculer g(11) puis déduire $g^{-1}(8)$
 - (d) Montrer que g^{-1} est dérivable en 8; puis Calculer $(g^{-1})'(8)$
- 6. Déterminer l'expression $g^{-1}(x)$ pour tout $x \in J$