21/11/2025

R. MOSAID

www.mosaid.xvz visit www.mosaid.xyz for more!

2BAC.SM

Série Fonctions Logarithmes (p 2/5)

21/11/2025 R. MOSAID

www.mosaid.xvz

visit www.mosaid.xvz for more!

Exercice 1

$$4. \lim_{x \to +\infty} \frac{x^2}{\ln(x+1)}$$

7.
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$$

1.
$$\lim_{x \to -\infty} (x^2 - \ln(\sqrt{-x}))$$
 4. $\lim_{x \to +\infty} \frac{x^2}{\ln(x+1)}$ 7. $\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$ 2. $\lim_{x \to +\infty} \frac{\ln(x^2 + x + 1)}{\sqrt{x}}$ 5. $\lim_{x \to 0^+} \left(\frac{1}{x^2} - \ln(x)\right)$ 8. $\lim_{x \to +\infty} \frac{\ln^3(x)}{x}$

5.
$$\lim_{x \to 0^+} \left(\frac{1}{x^2} - \ln(x) \right)$$

8.
$$\lim_{x \to +\infty} \frac{\ln^3(x)}{x}$$

3.
$$\lim_{x \to 0^+} \frac{x + \ln(x)}{x - \ln(x)}$$

$$\frac{x}{x \to +\infty} \sqrt{x} \qquad \frac{x \to 0^{+} \sqrt{x^{2}}}{\sqrt{x}} \qquad \frac{x \to 0^{+} \sqrt{x^{2}}}{\sqrt{x}} \qquad \frac{x}{x \to 0^{+}} \sqrt{x^{2}}$$
3.
$$\lim_{x \to 0^{+}} \frac{x + \ln(x)}{x - \ln(x)} \qquad 6. \quad \lim_{x \to -1^{+}} \left(\ln(x+1) - \frac{x}{x+1}\right) \qquad 9. \quad \lim_{x \to 0^{+}} x \left(\ln(x) - 1\right)^{2}$$

9.
$$\lim_{x \to 0^+} x \left(\ln(x) - 1 \right)^2$$

Exercice 2

Soit f la fonction numérique définie par : $\begin{cases} f(x) = \frac{\ln(x^2)}{x - 1}, & x \neq 1 \\ f(1) = 2 \end{cases}$

- 1. Déterminer l'ensemble de définition de *f* .
- 2. Montrer que f est continue en 1.
- 3. (a) Montrer que : $(\forall t \in]-1;0[)(\exists c \in]t;0[)\frac{\ln(t+1)-t}{t^2} = -\frac{1}{2(c+1)}$
 - (b) En déduire que f est dérivable à gauche en 1
- 4. (a) Montrer que : $(\forall t \in]0; +\infty[)$ $t \frac{t^2}{2} \le \ln(t+1) \le t \frac{t^2}{2} + \frac{t^3}{3}$.
 - (b) En déduire que f est dérivable à droite en 1.

Exercice 3

Soit $n \in \mathbb{N}^*$.

- 1. Montrer que l'équation $x \ln(x) = n$ admet une unique solution, notée α_n , dans l'intervalle $1; +\infty$.
- 2. Justifier que : $(\forall n \ge 3)$ $\alpha_n \ge \frac{n}{\ln(n)}$
- 3. En déduire $\lim_{n\to+\infty} \alpha_n$
- 4. Montrer que : $\lim_{n \to +\infty} \frac{\alpha_n}{n} = 0$, puis que : $\lim_{n \to +\infty} \frac{\ln(\alpha_n)}{\ln(n)} = 0$.

Exercice 4

Soit $n \in \mathbb{N}^*$. On considère la fonction numérique f_n définie sur l'intervalle $]0; +\infty[$ par : $f_n(x) = nx + \ln(x)$

- 1. Montrer que : $(\forall n \in \mathbb{N}^*)(\exists ! a_n \in]0; +\infty[)$ $f_n(a_n) = 0$.
- 2. (a) Montrer que : $(\forall n \in \mathbb{N}^*)$ $f_{n+1}(a_n) > 0$.
 - (b) En déduire que la suite (a_n) est décroissante, puis qu'elle est convergente.
- 3. (a) Établir que : $(\forall x \ge 3)$ 1 < $\ln(x) < x$.
 - (b) En déduire que : $(\forall n \ge 3)$ $\frac{1}{n} < a_n < \frac{1}{\sqrt{n}}$
 - (c) Calculer $\lim_{n\to+\infty} a_n$, puis $\lim_{n\to+\infty} na_n$.
- 4. Pour tout *n* de \mathbb{N}^* , on pose : $b_n = \frac{1}{a}$.

- (a) Montrer que : $\frac{\ln(n)}{\ln(b_n)} = 1 + \frac{\ln(\ln(b_n))}{\ln(b_n)}.$
- (b) En déduire que : $\lim_{n \to +\infty} \frac{\ln(n)}{\ln(b_n)} = 1$, puis que : $\lim_{n \to +\infty} \frac{na_n}{\ln(n)}$
- 5. Pour tout n de \mathbb{N}^* , on pose : $S_n = \sum_{k=1}^n a_k$.
 - (a) Montrer que : $\frac{\ln(n)}{\ln(b_n)} = 1 + \frac{\ln(\ln(b_n))}{\ln(b_n)}.$
 - (b) En déduire que : $\lim_{n \to +\infty} \frac{\ln(n)}{\ln(b_n)} = 1$, puis calculer : $\lim_{n \to +\infty} \frac{na_n}{\ln(n)}$.

Exercice 5

- 1. Montrer, pour tous réels x et y de]0; + ∞ [tels que x < y, que : $\frac{1}{y} \le \frac{\ln(y) \ln(x)}{y} \le \frac{1}{x}$
- 2. En déduire que : $(\forall n \in \mathbb{N}^*)$ $\ln(n+1) \ln(n) \le \frac{1}{n}$.
- 3. Montrer que : $\lim_{n \to +\infty} \sum_{k=1}^{\infty} \frac{1}{k} = +\infty$.

Exercice 6

Soit $n \in \mathbb{N}$ et $a \in \mathbb{R}_+^*$. On considère la fonction numérique f_n définie sur l'intervalle $]0; +\infty[$ par : $f_n(x) = \sum \frac{1}{x+k} - a$

- 1. Montrer que : $(\forall n \in \mathbb{N}^*)$ $(\exists! x_n \in]0; +\infty[)$ $f_n(x_n) = 0$.
- 2. (a) Établir que : $(\forall t \in]0; +\infty[)$ $\frac{1}{t+1} < \ln(t+1) \ln(t) < \frac{1}{t}$.
 - (b) En déduire que : $(\forall n \in \mathbb{N}^*)$ $a \frac{1}{r} < \ln\left(1 + \frac{2n}{r}\right) < a \frac{1}{r + 2n}$.
- 3. Montrer que : $\lim_{n \to +\infty} x_n = +\infty$, puis calculer $\lim_{n \to +\infty} \frac{x_n}{n}$.

Exercice 7

Soit $n \in \mathbb{N}$ tel que $n \ge 3$.

On considère la fonction f_n définie sur l'intervalle $]0;+\infty[$ par : $f_n(x)=x-n\ln(x)$

On note (C_n) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité 1cm

- 1. Montrer que l'équation $f_n(x) = 0$ admet exactement deux solutions x_n et y_n , dans l'intervalle $[0; +\infty[$, vérifiant : $0 < x_n < n < y_n$
- 2. (a) Montrer que : $(\forall n \ge 3)$ 1 < $x_n < e$.
 - (b) Vérifier que : $(\forall n \geq 3)$ $f_n(x_{n+1}) > 0$
 - (c) En déduire que la suite (x_n) est décroissante, puis qu'elle est convergente.
 - (d) Calculer $\lim_{n \to +\infty} x_n$, puis justifier que : $\lim_{n \to +\infty} \frac{\ln(x_n)}{x_{n-1}} = 1$.

21/11/2025

R. MOSAID

visit www.mosaid.xyz for more!

2BAC.SM www.mosaid.xyz Série Fonctions Logarithmes (p 4/5) visit www.mosaid.xyz for more!

21/11/2025 R. MOSAID

3. (a) Justifier que : $\lim_{n \to +\infty} y_n = +\infty$.

(b) Montrer que : $(\forall n \ge 3) \ n \ln(n) < y_n$.

(c) Établir que : $(\forall t \in]1; +\infty[)$ $2 \ln(t) < t$.

(d) Déterminer le signe de $f_n(2n\ln(n))$ pour tout $n \ge 3$.

(e) En déduire que : $n \ln(n) < y_n < 2n \ln(n)$.

(f) Montrer que : $\lim_{n \to +\infty} \frac{\ln(y_n)}{\ln(n)} = 1$.

Exercice 8

Soit (u_n) la suite numérique définie sur \mathbb{N}^* par : $u_n = \frac{n^n}{n!}$

1. Vérifier que : $(\forall n \in \mathbb{N}^*)$ $\ln\left(\frac{u_{n+1}}{u_n}\right) = n\ln\left(1 + \frac{1}{n}\right)$.

2. (a) Établir que : $(\forall t \in]0; +\infty[)$ $t - \frac{t^2}{2} < \ln(t+1) < t$.

(b) En déduire que : $(\forall n \ge 2)$ $n-1-\frac{1}{2}\sum_{k=1}^{n-1}\frac{1}{k} < \ln(u_n) < n-1$.

3. (a) Établir que : $(\forall t \in]0; +\infty[)$ $\frac{1}{t+1} < \ln(t+1) - \ln(t) < \frac{1}{t}$.

(b) En déduire que : $(\forall t \in]1; +\infty[)$ $\ln(t+1) - \ln(t) < \frac{1}{t} < \ln(t) - \ln(t-1)$.

(c) Montrer alors que : $(\forall n \geq 2)$ $n - \frac{3}{2} - \frac{1}{2} \ln(n-1) < \ln(u_n) < n-1$.

4. Calculer $\lim_{n\to+\infty} \frac{\ln(u_n)}{n}$, puis $\lim_{n\to+\infty} u_n$.

5. Pour tout n de \mathbb{N}^* , on pose : $v_n = \frac{n}{\sqrt[n]{n!}}$.

(a) Exprimer v_n en fonction de u_n pour tout n de \mathbb{N}^* .

(b) Montrer que : $\lim_{n \to +\infty} v_n = e$.

Exercice 9

I. Soit g la fonction numérique définie sur l'intervalle $]-1;+\infty[$ par : $g(x)=\ln(x+1)-\arctan(x)$ On note (C_g) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) d'unité 1cm.

1. Calculer $\lim_{x \to -1^+} g(x)$, puis interpréter géométriquement le résultat obtenu.

2. (a) Calculer $\lim_{x \to +\infty} g(x)$.

(b) Montrer que la courbe (C_g) présente une branche parabolique au voisinage de $+\infty$, dont on précisera la direction.

3. Étudier la branche infinie de la courbe (C_g) au voisinage de $+\infty$.

4. (a) Montrer que : $(\forall x \in]-1;+\infty[)$ $g'(x)=\frac{x(x-1)}{(x+1)(x^2+1)}$.

(b) En déduire le sens de variations de g sur $]-1;+\infty[$

(c) Dresser le tableau de variations de g sur $]-1;+\infty[$.

5. (a) Montrer qu'il existe un unique réel c de]2; 3[tel que : g(c) = 0.

(b) En déduire le signe de g sur $]-1;+\infty[$.

6. Tracer, à main levée, la courbe (C_g) dans le repère (O, \vec{i}, \vec{j})

II. Soit *n* un nombre entier naturel non nul :

1. Montrer que l'équation g(x) = n admet une unique solution, notée α_n , dans l'intervalle $]-1;+\infty[$

2. Justifier que : $(\forall n \in \mathbb{N}^*)$ $e^n - 1 < \alpha_n$, puis déduire $\lim_{n \to +\infty} \alpha_n$

3. (a) Montrer que : $(\forall n \in \mathbb{N}^*)$ $\ln\left(\frac{\alpha_n + 1}{e^n}\right) = \arctan(\alpha_n)$.

(b) En déduire $\lim_{n\to+\infty} \frac{\alpha_n}{e^n}$.

III. On considère la suite numérique (u_n) définie par : $\begin{cases} u_0 \in [0;c] \\ u_{n+1} = u_n + g(u_n), \ n \geq 0 \end{cases}$

1. (a) Établir que : $(\forall x \in [0; +\infty[) \quad \arctan(x) \le x$.

(b) En déduire que : $(\forall x \in [0; +\infty[) \quad x + g(x) \ge 0$

2. Montrer que : $(\forall n \in \mathbb{N})$ $0 \le u_n < c$.

3. Montrer que la suite (u_n) est décroissante, puis qu'elle est convergente.

4. Déterminer la limite de la suite (u_n) .

Exercice 10

I. Soit *φ* la fonction numérique définie sur l'intervalle [0; +∞[par : φ(t) = ln(1 + √t) - √t

1. Montrer que : $(\forall t \in]0; +\infty[)$ $(\exists c \in]0; t[)$ $\frac{\varphi(t)}{t} = -\frac{1}{2(1+\sqrt{c})}$.

2. En déduire que : $(\forall t \in]0; +\infty[)$ $-\frac{1}{2} < \frac{\varphi(t)}{t} < -\frac{1}{2(1+\sqrt{t})}$

3. Montrer que : $(\forall x \in]-\infty; 0[)$ $-\frac{1}{2} < \frac{x + \ln(1-x)}{x^2} < -\frac{1}{2(1-x)}$

4. En déduire que : $\lim_{x\to 0^-} \frac{x + \ln(1-x)}{x^2} = -\frac{1}{2}$.

II. Soit f la fonction numérique définie sur l'intervalle $I=]-\infty;0]$ par : $\begin{cases} f(0)=-1\\ f(x)=\frac{x}{(1-x)\ln(1-x)} \end{cases}$, x<0

On note (\mathscr{C}) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) d'unité 1cm.

1. Étudier la branche infinie de la courbe ($\mathscr C$) au voisinage de $-\infty$.

2. Montrer que $\,f\,$ est continue à droite en 0.

3. (a) Montrer que f est dérivable sur I, et que : $\begin{cases} f'_g(0) = -\frac{1}{2} \\ f'(x) = \frac{x + \ln(1-x)}{\left((1-x)\ln(1-x)\right)^2}, & x < 0 \end{cases}$

(b) En déduire que f est strictement croissante sur I.

Série Fonctions Logarithmes (p 5/5)

21/11/2025

www.mosaid.xyz visit www.mosaid.xyz for more!

R. MOSAID

- 4. Tracer, à main levée, la courbe ($\mathscr C$) dans le repère $(O,\vec i,\vec j)$.
- 5. Soit *n* un nombre entier naturel non nul :
 - (a) Montrer que l'équation $f(x) = \frac{1}{n}$ admet une unique solution, notée x_n , dans l'intervalle I.
 - (b) Établir que : $(\forall n \in \mathbb{N}^*)$ $\ln(1+n) < \frac{n}{2}$.
 - (c) En déduire que : $(\forall n \in \mathbb{N}^*)$ $x_n < -n$.
 - (d) Calculer $\lim_{n\to+\infty} x_n$.
- III. On considère la suite numérique (u_n) définie par : $\begin{cases} u_0 < 0 \\ u_{n+1} = f(u_n) \end{cases}, n \geq 0$
- 1. Montrer que l'équation f(x) = x admet une seule solution, notée α , dans l'intervalle $]-\infty;0[$.
- 2. (a) Établir que : $(\forall t \in]1; +\infty[)$ $t \ln(t) > t-1$.
 - (b) En déduire que : $(\forall x \in]-\infty;0[) \quad |f'(x)|<\frac{1}{2}$.
- 3. Montrer que : $(\forall n \in \mathbb{N})$ $u_n < 0$.
- 4. Montrer que : $(\forall n \in \mathbb{N})$ $|u_{n+1} \alpha| < \frac{1}{2}|u_n \alpha|$.
- 5. En déduire que la suite (u_n) est convergente et préciser sa limite.