

Devoir

Lycée: Taghzirt

2ème Année Bac

Prof: R. MOSAID 2025/2026 Continuité et dérivation

Exercice 1 (Les questions I, II, III et IIII sont indépendantes) (7 pts)

I. Calculer les limites suivantes :

(2.5)

a)
$$\lim_{x \to +\infty} \sqrt[3]{8x^3 + x^2 + 1} - 3x$$
 ; b) $\lim_{x \to -\infty} \sqrt[3]{-8x^3 - 3x^2 + 1} + 2x$

II. Résoudre dans \mathbb{R} ce qui suit : a) $\sqrt[3]{x+2} - \sqrt[3]{2-x} = \sqrt[3]{4}$; b) $\sqrt[5]{7x+11} < 2$

III. Soit la fonction g définie par : $\begin{cases} g(x) = \frac{\sqrt[3]{8x+19}-3}{x-1} & ; \quad x \neq 1 \\ g(1) = \frac{8}{27} \end{cases}$

(b) Montrer que g est continue en $x_0 = 1$.

(a) Déterminer D_g le domaine de définition de g.

- IV. Soit f une fonction définie et continue sur [0;1] telle que $f(0) \neq f(1)$.
 - Montrer $\exists c \in [0;1]$
- $2024 f(c) + 2025 f(1-c) = 4049 f(\sqrt[3]{c})$

Exercice 2 (5.5 pts)

Soit g la fonction définie sur \mathbb{R} par : $g(x) = x^3 + 3x - 3$

1. Dresser le tableau de variations de g sur \mathbb{R} .

2. Montrer que l'équation g(x) = 0 admet une solution unique α sur \mathbb{R} .

3. Vérifier que : $0 < \alpha < 1$; puis montrer que $\sqrt[3]{3 - 3\alpha} = \alpha$

4. Résoudre dans \mathbb{R} l'inéquation : $x^3 - 3 < -3x$

5. On considère la fonction h définie par : $\begin{cases} h(x) = g(x) + \alpha & ; \quad x \le \alpha \\ h(x) = \sqrt[3]{3 - 3x} & ; \quad x > \alpha \end{cases}$

(1)

Montrer que h est continue en α .

Exercice 3 (7.5 pts)

On considère la fonction f définie sur $[3; +\infty[$ par : $f(x) = x + 1 - 4\sqrt{x - 3}$

1. Calculer $\lim_{x \to +\infty} f(x)$.

2. Étudier la continuité de f sur $]3; +\infty[$.

3. Étudier la dérivabilité de f à droite en 3, puis interpréter le résultat graphiquement.

(a) Montrer que pour tout $x \in [3; +\infty[: f'(x) = \frac{x-7}{\sqrt{x-3}(\sqrt{x-3}+2)}]$

(b) Dresser le tableau de variations de la fonction f sur $[3; +\infty]$

5. Soit *g* la restriction de la fonction *f* sur l'intervalle $I = [7; +\infty[$.

(b) Dresser le tableau de variations de la fonction g^{-1} .

(c) Vérifier que : $g(x) = (\sqrt{x-3} - 2)^2$ puis déterminer $g^{-1}(x)$ pour tout $x \in J$.

(a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.