Devoir 02 - S01 Mathématiques

Lycée : Taghzirt

2BAC.SM

Exercice 1 (14 points)

On considère la fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = x + 1 - \sqrt[3]{x} - \sqrt[3]{x^2} &; & \text{si } x \ge 0 \\ f(x) = \frac{\arctan(x)}{x} &; & \text{si } x < 0 \end{cases}$

et (C_f) la Courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1. Montrer que f est continue en 0.
- 2. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et calculer $\lim_{x \to -\infty} f(x)$.
- 3. En utilisant le théorème des accroissements finis ; montrer que : $(\forall x \in]-\infty; 0[); \quad x < \arctan(x) < \frac{x}{1+x^2}.$
- 4. Étudier le dérivabilité de f en 0, puis donner une interprétation géomatique au résultat obtenu.
- 5. (a) Montrer pour tout $x \in [0; +\infty[; f'(x) = \frac{(\sqrt[3]{x} 1)(3\sqrt[3]{x} + 1)}{\sqrt[3]{x^2}}$
 - (b) Montrer que f est croissante sur] ∞ ; 0[puis dresser son tableau de variation sur \mathbb{R} .
- 6. étudier les branches infinies de (C_f) ; puis Construire (C_f) dans le repère $(O; \vec{i}; \vec{j})$.
- 7. Soit *g* la restriction de f sur $[1; +\infty[$
 - (a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer
 - (b) Calculer g(8); puis montrer que g^{-1} est dérivable en 3 et calculer $(g^{-1})'(3)$.
- 8. On considère la fonction h définie sur \mathbb{R}^+ par : $h(x) = \frac{1}{3}f(x) + \frac{2}{3} f\left(\frac{x}{3}\right) \frac{x^2}{9}A$ où A est un réel qui vérifie h(1) = 0
 - (a) En utilisant le théorème de Rolle , montrer que : $(\exists c \in [0;1])$: $f'(c) f'(\frac{c}{3}) = \frac{2}{3}cA$
 - (b) En utilisant le théorème des accroissements finis ; déduire que : $(\exists b \in [0;1])$: f''(b) = A

Exercice 2 (6 points)

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \arctan(1 + x)$

- 1. Montrer que l'équation f(x) = x admet une unique solution a dans \mathbb{R} , tel que : 1 < a < 2
- 2. Montrer que : $(\forall x \in [1; 2]); |f'(x)| \le \frac{1}{5}$
- 3. Soit (U_n) la suite définie par : $\begin{cases} U_0=1\\ U_{n+1}=f(U_n) & (\forall n\in\mathbb{N}) \end{cases}$
 - (a) Montrer que : $(\forall n \in \mathbb{N})$; $1 < U_n < 2$; puis déduire que : $(\forall n \in \mathbb{N})$; $|U_{n+1} a| \le \frac{1}{5}|U_n a|$
 - (b) Déduire que (U_n) est convergente et calculer sa limite