Partie A On considère la fonction $g(x) = x^3 + x^2 + 3x - 1$. Partie B Soit f la fonction définie par : $f(x) = \begin{cases} \sqrt{|x^2 + 3x + 2|} & \text{si } x < -1 \\ \frac{x^3 + x + 2}{x^2 + 1} & \text{si } x \ge -1 \end{cases}$ On note (C_f) sa courbe représentative dans un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité 2cm. 2. Écrire f(x) sans le symbole de valeur absolue puis calculer les limites de f aux bornes de D_f (01 pt) 6. Montrer que (*D*) : y = x est une asymptote oblique à C_f en $+\infty$ (0,25pt) 9. Étudier sur] $-\infty$; -2[la position relative de (C_f) par rapport à $(\Delta): y = -x - \frac{3}{2}$ (0,5 pt) 10. Déterminer les coordonnées des points d'intersection de (C_f) avec les axes du repère. (0,5pt)11. Montrer que f est dérivable sur $[-1; +\infty[$ et que $\forall x \in [-1; +\infty[$, on a : $f'(x) = \frac{(x-1)g(x)}{(x^2+1)^2}$. 14. Soit g la restriction de f à [-2;-1] et C_g sa courbe représentative. Partie C On considère maintenant h la restriction de f à l'intervalle $I =]-\infty; -2[$

- 3. Calculer $(h^{-1})'(\sqrt{2})$(0,5pt)

﴿وَقَالُواْ اَتَّخَذَ ٱلرَّحْمَنُ وَلَدًا (88) • لَّقَدْ جِئْتُمْ شَيْئًا إِدًّا (89) • تَكَادُ ٱلسَّمَـٰوَٰتُ يَتَفَطَّرْنَ مِنْهُ وَتَنشَقُ ٱلْأَرْضُ وَتَخِرُ ٱلْجِبَالُ هَدًّا (90) • أَن دَعَوْاْ لِلرَّحْمَانِ وَلَدًا (91)• وَمَا يَنْبُغِي لِلرَّحْمَانِ أَن يَتَخَّذَ وَلَدًا (92)• إِن كُلُّ مَن فِي ٱلسَّمَاوَٰتِ وَٱلْأَرْضِ إِلَّا ءَاتِي ٱلرَّحْمَانِ عَبْدًا (93) • لَّقَدْ أَحْصَهُمْ وَعَدَّهُمْ عَدًّا (94) • وَكُلُّهُمْ ءَاتِيهِ يَوْمَ ٱلْقِيَـٰمَةِ فَرْدًا (95) ﴾ (مريم الآيات 95-88)