المتتاليات العددية

I عمو ميات حول المتتاليات العددية :

نشاط٠

لاحظ ثم أتمم بأربعة أعداد ملائمة لتسلسل كل لائحة من اللوائح التالية:

..... 6 . 4 . 2 . 0 ()

ب، 8 ، 4 ، 2 ، 1 (ب

ج) 1 ، 1 ، 4 ، 9 ، 4 ، 1 ، 0

- نأخذ الآن الأعداد المتتابعة الآتية: 1، 3، 5، 7، ونربط الأعداد الصحيحة الطبيعية بهذه الأعداد على الشكل التالى:

0;1;2;3;.....;n;... نقول لقد عرفنا تطبيقا u من المجموعة 0;1;3;5;7;.....;u(n);...

نحو 🛘 .

1- تعریف:

$$I=$$
لیکن $I=$ $\left\{ egin{align*} n & ;n & +1;n & +2; \ldots \\ 0 & 0 & 0 \end{array}
ight\}$ کل تطبیق $I=$

من $_{I}$ نحو $_{\Box}$ يسمى متتالية عددية .

مثال 1 :

 $u: \square \to \square$ نعتبر التطبيق u المعرف كما يلي : $u \mapsto 2n+3$

. u متتالیة عددیة ، u(0)=3 هي صورة u بالمتتالیة u

2- اصطلاحات ورموز:

 $n \in I$ و متتالية عددية معرفة على ا

u(n) عوض u بالرمز u عوض u . u

 $(u_n)_{n\geq n_0}$ نرمز للمتتالية u بالرمز بالرمز $(u_n)_{n\in I}$ أو بالرمز

العدد u_n يسمى حد المتتالية $(u_n)_{n\geq n_0}$ ذو المدل $(u_n)_{n\geq n_0}$ ذو المدال المتتالية . $(u_n)_{n\geq n_0}$

العدد $(u_n)_{n\geq n_0}$ يسمى الحد الأول للمتتالية u_{n_0} .

إذا كان $n_0=0$ أي في هذه الحالة $n_0=1$ فإننا نرمز للمتتالية $n_0=0$ بالرمز $(u_n)_{n\geq 0}$ أو $(u_n)_{n\geq 0}$ أو $(u_n)_{n\geq 0}$ أو $(u_n)_{n\geq 0}$

 $(u_n)_{n\geq 1}$ إذا كان $(u_n)_{n\geq n_0}$ أي هذه الحالة $I=\square^*$ فإننا نرمز للمتتالية $n_0=1$ $(u_n)_{n\in\mathbb{N}^*}$

مثال 2 :

u(n) = 2n + 3 " نعود إلى المثال ، لدينا المتتالية المعرفة ب

- نرمز لهذه المتتالية ب $(u_n)_{n\geq 0}$ أو $(u_n)_{n\geq 0}$
- الحد الأول لهذه المتتالية هو $u_{0}=3$ و الحد ذو المدل 10 لهذه المتتالية هو $u_{0}=3$
 - $u_{10} = 2 \times 10 + 3 = 23$
 - . $u_n = 2n + 3$ هو المتتالية هو -
 - 3- متتاليات معرفة بالصيغة الصريحة لحدها العام:

. لتكن $(u_n)_{n\geq n_0}$ متتالية عددية

إذا كان الحد العام u_n معرف بدلالة n وغير مرتبط بالحدود الأخرى ، نقول إن المتتالية $(u_n)_{n\geq n_0}$ معرفة بصيغة صريحة .

مثال:

 $u_n = n^2 - 5n$ بعتبر المتتالية (u_n) المعرفة ب

المتتالية (u_n) معرفة بصيغة صريحة لأن n^2-5n لا يتعلق بحدود أخرى لـ (u_n) . 4- متتاليات معرفة بعلاقة ترجعية:

تعریف: . لتكن $(u_n)_{n\geq n_0}$ متتالية عددية

إذا كان الحد العام u_n مر تبط بحدود أخرى لـ $(u_n)_{n>n}$ ، نقول إن المتتالية . معرفة بعلاقة ترجعية $(u_n)_{n\geq n_0}$

مثال:

نعتبر المتتالية (v_n) المعرفة ب $v_{n+1}=2v_n-1$ و $v_n=1$ ، المتتالية (v_n) معرفة بعلاقة v_n يتعلق ب v_{n+1} نرجعية لأن

 $_{II}$ المتتالية المكبورة ، المتتالية المصغورة ، المتتالية المحدودة :

. $u_n = \frac{n+3}{n+1}$ نعتبر المتتالية (u_n) المعرفة كما يلي :

بین أن $u_n \ge 0$: $u_n \ge 1$ ماذا تستنتج 1

بين أن (u_n) مكبورة بالعدد 3 ، ماذا تستنتج ؟ -2

تعریف:

لتكن $(u_n)_{n\geq n_0}$ متتالية عددية و M و m عددين حقيقيين . u_n نقول إن المتتالية $(u_n)_{n\geq n_0}$ مكبورة بالعدد u_n إذا وفقط إذا كان $u_n \geq n_0$: $u_n \leq M$

- نقول إن المتتالية $(u_n)_{n\geq n_0}$ مصغورة بالعدد m إذا وفقط إذا كان $m\geq n_0: u_n\geq m$

- نقول إن المتتالية $(u_n)_{n\geq n_0}$ محدودة إذا وفقط إذا كانت مكبورة ومصغورة .

تمرین تطبیقی 1:

 $\forall n \in \square$: $u_n = \frac{1}{1+n^2} + \cos n$ نعتبر المتتالية (u_n) المعرفة ب

- بین أن (u_n) مكبورة بالعدد 2 ومصغورة بالعدد -1 ? -111 رتابة متتالیة :

نشاط

 $\forall n \geq 1$: $u_n = \frac{n-1}{n}$: ينعتبر المتتالية $(u_n)_{n \geq 1}$ المعرفة بما يلي (1

أ- أحسب الحدود $_{u_1}$ ، $_{u_2}$ ، و $_{u_3}$ ثم رتبها.

 $n \in \mathbb{R}^*$ ب ماذا تستنتج u_n ماذا تستنتج

 (v_n) نعتبر المتتالية (v_n) المعرفة بما يلي : $v_n = \frac{1}{2^n}$ ، بين أن المتتالية (2 تناقصية .

تعریف:

. لتكن $(u_n)_{n\geq n_0}$ متتالية عددية

- نقول إن المتتالية $(u_n)_{n\geq n_0}$ تزايدية (تزايدية قطعا) إذا وفقط إذا كان

 $(\forall n \geq n_0: u_{n+1} > u_n)$ $\forall n \geq n_0: u_{n+1} \geq u_n$

- نقول إن المتتالية $(u_n)_{n\geq n_0}$ تناقصية وتناقصية قطعا) إذا و فقط إذا كان

 $(\forall n \ge n_0: u_{n+1} < u_n) \qquad \forall n \ge n_0: u_{n+1} \le u_n$

- نقول إن المتتالية u_{n} : $u_{n+1} = u_n$ خان وفقط إذا كان $u_{n+1} = u_n$ - نقول إن المتتالية u_{n}

تمرین تطبیقی 2:

1- نعتبر المتتالية (u_n) المعرفة ب $u_n = \sqrt{n}$ حيث $u_n = 0$ ، بين أن (u_n) تزايدية قطعا . 2- نعتبر المتتالية (v_n) المعرفة ب $v_{n+1} = \frac{1}{2}v_n$ و $v_n = 4$

 $\cdot \forall n \in \mathbb{N} : v_n > 0$ أن $v_n = 0$

بین أن (v_n) تناقصیة قطعا

المتتالية الحسابية : $_{-IV}$

نشاط٠

 $\forall n \geq 0$: $u_n = 2n + 1$: نعتبر المتتالية $(u_n)_{n \geq 0}$ المعرفة بما يلي

1- أحسب الحدود u_3-u_2 و u_2-u_1 ، u_1-u_0 عاذا تلاحظ ؟

2- أحسب $u_{n+1}-u_n$ ، ماذا تلاحظ

1 - تعریف :

لتكن $(u_n)_{n\geq n_0}$ متتالية عددية

- نقول إن $(u_n)_{n\geq n_0}$ متتالية حسابية إذا وُجد عدد حقيقي r بحيث

 $\forall n \geq n_0: \quad u_{n+1} = u_n + r \quad :$

 $(u_n)_{n\geq n_0}$ العدد الحقيقي r يسمى أساس المتتالية r

تمرين تطبيقي 3:

نعتبر المتتالية (u_n) المعرفة بما يلي : $u_n = -5n + 4$: نعتبر المتتالية u_n المعرفة بما يلي : $u_n = -5n + 4$ بين أن u_n متتالية حسابية محددا عناصر ها المميزة (الحد الأول والأساس) . u_n متتالية حسابية محددا عناصر ها المميزة (الحد الأول والأساس) .

2- صيغة الحد العام لمتتالية حسابية:

 $u_n = u_0 + nr$ لدينا $u_p = u_0 + pr$ و $u_p = u_0 + pr$ الذن $u_n = u_p + (n-p)r$ الذن $u_n = u_{n-1} + r$

 $u_n = u_{n-1} + r$ $u_n = u_{n-1} + r$ $u_n = u_0 + nr$ $u_n = u_0 + nr$ $u_n = u_0 + nr$ $u_n = u_0 + nr$

خاصية:

نشاط٠

 $_{\mathbb{N}}$ من $_{p}$ من $_{n}$ فإنه لكل $_{n}$ و من $_{n}$

 $u_n = u_p + (n-p)r$: Limit

حالة خاصة:

 $_{\mathbb{N}}$ اذا کانت $_{(u_n)}$ متتالیة حسابیة أساسها $_r$ فإنه لکل من

 $u_n = u_0 + n r$: Light

تمرين تطبيقي 4:

لتكن $(u_n)_{n\geq 1}$ متتالية حسابية و r أساسها بحيث حدها الأول هو $u_1=8$ و $u_1=8$ أحسب أساس هذه المتتالية .

3- مجموع حدود متتابعة لمتتالية حسابية:

نشاط:

r لتكن (u_n) متتالية حسابية أساسها

$$0 \le p \le n$$
 و $0 \le n$ عين أن $u_p + u_{n-p} = u_0 + u_n$ (1)

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$
 : (2)

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

 $S_n = u_n + u_{n-1} + u_{n-2} + \dots + u_0$

$$S'_{n} = u_{p} + u_{p+1} + \dots + u_{n}$$
 : (3

خاصية:

$$S_n = u_p + u_{p+1} + u_{p+2} + \dots + u_n$$
 : $(u_n)_{n \ge n_0}$

 $n_0 \le p \le n$

$$S_n = (n-p+1)\left(\frac{u_p + u_n}{2}\right) \qquad \vdots \qquad \vdots$$

حالة خاصة:

$$S_n = \left(nombre \ de \ termes \ de \ S_n\right) \left(\frac{\left(1^{er} terme \ de \ S_n\right) + \left(dernier \ terme \ de \ S_n\right)}{2}\right)$$

تمرين تطبيقي 5:

 $\forall n \geq 0$: $u_n = 5n - 4$: يلي المعرفة بما يلي المعرفة بما يلي المتتالية

. بين أن $(u_n)_{n\geq 0}$ متتالية حسابية محددا عناصر ها المميزة (1

 $S_n = u_3 + u_4 + u_5 + \dots + u_{10}$: (2

المتتالية الهندسية : V

نشاط:

 $\forall n \geq 0$: $u_n = 2 \times 3^n$: نعتبر المتتالية $(u_n)_{n>0}$ المعرفة بما يلي

ج أحسب
$$\frac{u_{n+1}}{u_n}$$
 و $\frac{u_3}{u_2}$ ، $\frac{u_2}{u_1}$ ، $\frac{u_1}{u_0}$ عاذا تلاحظ ؟

1- تعریف:

. لتكن $(u_n)_{n\geq n_0}$ متتالية عددية

$$\forall n \geq n_0: u_{n+1} = q \times u_n$$
:

. $(u_n)_{n\geq n_0}$ العدد الحقيقي q يسمى أساس المتتالية

مثال:

نعتبر المتتالية (u_n) المعرفة بما يلي : $-5 \times 2^n = -5 \times 2^n$ بين أن (u_n) متتالية هندسية محددا عناصر ها المميزة (الحد الأول والأساس).

$$u_n = q^n \times u_0$$
 المتالية هندسية : $u_n = q^n \times u_0$ المتالية هندسية : $u_n = q^n \times u_0$ المتالية هندسية و $u_n = q^n \times u_0$ المتساويات : $u_n = q^n \times u_0$ المتساويات : $u_n = q^n \times u_0$

خاصية:

إذا كانت (u_n) متتالية هندسية أساسها q فإنه لكل $n \ge 0$ و الدينا : $u_n = q^{n-p} \times u_p$

حالة خاصة:

 $n \ge 0$ إذا كانت (u_n) متتالية هندسية أساسها q فإنه لكل $u_n = q^n \times u_0$: لدينا

تمرين تطبيقي 6:

لتكن (u_n) متتالية هندسية و q أساسها بحيث $u_1 = \frac{3}{4}$ و الحسب أساس هذه المتتالية .

3- مجموع حدود متتابعة لمتتالية هندسية:

نشاطن

 $q \neq 1$ و $q \neq 0$ لتكن الية هندسية أساسها q بحيث الية هندسية أساسها لتكن

 $S_n = u_p + u_{p+1} + u_{p+2} + \dots + u_n$: (1)

 $qS_n = qu_p + q^2u_p + q^3u_p + \dots + q^{n-p+1}u_p$: نون أن $S_n = u_p + qu_p + q^2u_p + \dots + q^{n-p}u_p$: نون أن $S_n = u_p + qu_p + q^2u_p + \dots + q^{n-p}u_p$ (**)

 $S_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$: (**) $e^{(**)}$ $e^{(**$

 $q \neq 1$ و $q \neq 0$ لتكن $q \neq 0$ متتالية هندسية أساسها و بحيث الية هندسية أساسها

$$n \ge p \ge n_0$$
 وليكن
$$S_n = u_p + u_{p+1} + u_{p+2} + \dots + u_n$$
 الدينا
$$S_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

حالة خاصة:

$$S_n = u_0 \times \frac{1-q^{n+1}}{1-q}$$
 في $S_n = u_0 + u_1 + u_2 + \dots + u_n$ يذا كان $S_n = \left(1^{er} terme \ de \ S_n\right) \times \left(\frac{1-q^{(nombre \ de \ termes \ de \ S_n)}}{1-q}\right)$: غلاما

تمرين تطبيقي:

 $u_n = \frac{1}{3} \times 2^n$: ينعتبر المتتالية (u_n) المعرفة بما يلي

. أ) بين أن (u_n) متتالية هندسية محددا عناصر ها المميزة (1

.
$$S_n = u_0 + u_1 + u_2 + \dots + u_9$$
: (ب

 $n \in \mathbb{N}$ $S_n' = 1 + 3 + 3^2 + 3^3 + 3^4 + \dots + 3^n$: (2