R. MOSAID

Exercice 1

Soit *ABC* un triangle et soit $G = Bar\{(A; 2); (B; 3); (C; -1)\}$.

- 1. Montrer que : $\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$ et construire le point G.
- 2. Soit *K* un point défini par $5\overrightarrow{AK} = 3\overrightarrow{AB}$.
 - (a) Montrer que : $K = Bar\{(A; 2); (B; 3)\}.$
 - (b) Montrer que $G = \text{Bar}\{(K; 5); (C; -1)\}.$
 - (c) Déduire que les points *G*, *K* et *C* sont alignés.
- 3. Soit $H = Bar\{(B; 3); (C; -1)\}.$
 - (a) Montrer que : $G = Bar\{(H; 1); (A; 1)\}.$
 - (b) Déduire l'intersection des droites (*AH*) et (*KC*).
- 4. Déterminer l'ensemble des points M tels que : $\frac{5}{4} \| 2\overrightarrow{MA} + 3\overrightarrow{MB} \overrightarrow{MC} \| = \| 2\overrightarrow{MA} + 3\overrightarrow{MB} \|$

Exercice 2

Dans le plan rapporté à un repère orthonormé $(O; \vec{i}; \vec{j})$ on considère les points : $A(\sqrt{3} - 1; \sqrt{3} + 1)$, B(-2; 2)

- 1. (a) Montrer que : $OA = 2\sqrt{2}$ et calculer OB.
 - (b) Déduire la nature du triangle *OAB*.
- 2. (a) Calculer le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$, $\cos(\overrightarrow{OA}, \overrightarrow{OB})$ et $\sin(\overrightarrow{OA}, \overrightarrow{OB})$.
 - (b) Déterminer la mesure principale de l'angle $(\overrightarrow{OA}, \overrightarrow{OB})$ puis déduire à nouveau la nature du triangle OAB.
- 3. Donner l'équation cartésienne de la hauteur du triangle *OAB* passant par *A*.

Exercice 3

On considère le cercle (\mathscr{C}) d'équation : $x^2 + y^2 - 2x - 4y - 3 = 0$

- 1. Montrer que (\mathscr{C}) est un cercle de centre $\Omega(1;2)$ et de rayon $R=2\sqrt{2}$.
- 2. (a) Vérifier que $A(-1; 0) \in (\mathscr{C})$.
 - (b) Donner une équation cartésienne de la droite tangente (D) au cercle (\mathscr{C}) au point A.
- 3. (a) Montrer que la droite (Δ) d'équation x + y 3 = 0 coupe le cercle ($\mathscr C$) en deux points E et F.
 - (b) Déterminer les coordonnées des points *E* et *F*.
 - (c) Donner les équations des droites tangentes au cercle (\mathscr{C}) en E et F.
- 4. (a) Vérifier que le point B(1; -2) est à l'extérieur du cercle (\mathscr{C}).
 - (b) Déterminer les équations des tangentes au cercle (\mathscr{C}) qui passent par le point B.