Lycée qualifiant : Kachkate Année scolaire : 2025/2026

Niveau: 1BAC-SEF

Devoir à domicile Nř1 Semestre 1 Durée : 2 heures

Professeur: BELYAZID Abdellatif Matière : Mathématiques

Exercice 1: (7 pts)

- (1) On considère la proposition suivante, $P: (\forall x \in \mathbb{R}): x^2 5x + 4 \neq 0$.
 - (a) Déterminer la négation de la proposition P.
 - (b) En déduire, la valeur de vérité de la proposition P.

(2)

- (a) Montrer l'équivalence suivante : $\forall (x,y) \in \mathbb{R}^2_+ : x + y + 2 \ge 2\sqrt{x} + 2\sqrt{y} \iff \forall (x,y) \in \mathbb{R}^2_+ : (\sqrt{x} - 1)^2 + (\sqrt{y} - 1)^2 \ge 0.$
- (b) En déduire, la valeur de vérité de la proposition : $\forall (x,y) \in \mathbb{R}^2_+ : x+y+2 \geq 2\sqrt{x}+2\sqrt{y}$.

(3)

- (a) Montrer que $(\forall x \in \mathbb{R}) : x^2 + 1 \neq 2x 1$.
- (b) Soit ABC un triangle tel que AB = a, AC = 1 et $BC = \sqrt{2a-1}$ avec $a \in]\frac{1}{2}, +\infty[$. Montrer que le triangle ABC n'est pas rectangle en A.
- (4) Soient $x, y \in \mathbb{R}$.

Montrer l'implication suivante : $x \neq -\frac{1}{2}y \Rightarrow x - y \neq -3(x+y)$. S Résoudre dans \mathbb{R} l'équation suivante : $x^2 + 2|x-1| - 1 = 0$.

(6)

(a) Soit $a \in \mathbb{R} \setminus \{1\}$.

Montrer par récurrence que : $(\forall n \in \mathbb{N}^*)$: $1 + a + a^2 + \cdots + a^n = \frac{a^{n+1}-1}{a-1}$.

- (b) En déduire : $1 + 3 + 3^2 + \dots + 3^{10} = \dots$
- ⑦ Montrer par récurrence que : $(\forall n \in \mathbb{N}^*)$: $8^n 3^n$ est un multiple de 5.

Exercice 2:(4,5 pts)

On considère la fonction numérique f définie par :

$$f(x) = \frac{2x}{x^2 + 1}$$

- 1 Montrer que $D_f = \mathbb{R}$.
- 2 Soit $x \in \mathbb{R}$, montrer que $-1 \le f(x) \le 1$.
- |3| Étudier la parité de la fonction f.
- 4 Montrer que pour tout $x, y \in \mathbb{R}$: $f(x) f(y) = \frac{2(1-xy)(x-y)}{(x^2+1)(y^2+1)}$, puis en déduire T_f .
- $\boxed{5}$ Déduire le sens des variations de f sur [0;1] et $[1;+\infty[$.
- [6] En déduire le sens des variations de f sur [-1;0] puis sur $]-\infty;-1]$.
- Dresser le tableau de variations de f sur \mathbb{R} .
- 8 Déterminer les extrémums de f sur \mathbb{R} s'ils existent.

Exercice 3:(8,5 pts)

On considère les fonctions f et g définies par :

$$f(x) = \frac{1}{4}x^3$$
 et $g(x) = \sqrt{x+2}$.

- 1 Déterminer D_f et D_q , les ensembles de définition de f et g.
- |2| Étudier les variations de f et g.
- 3 Donner les tables de variations des fonctions f et g.
- (a) Vérifier que f(2) = g(2) puis interpréter graphiquement ce résultat.

- (b) Tracer (C_f) et (C_g) , leurs courbes respectives de f et g dans le même repère orthonormé $(O; \vec{i}, \vec{j})$.
- (c) Résoudre graphiquement l'équation f(x) = g(x) et l'inéquation $f(x) \ge g(x)$.
- (d) Déterminer graphiquement $g([2; +\infty[) \text{ et } f(] \infty; 2])$.
- $\boxed{5}$ Déterminer $D_{f \circ g}$, l'ensembles de définition de $f \circ g$.
- 6 Montrer que : $(\forall x \in D_{f \circ g})$: $(f \circ g)(x) = \frac{1}{4}(x+2)\sqrt{x+2}$.
- 7 Dresser le tableau de variations de la fonction $f \circ g$.