Beni Mellal

Prof: *R. MOSAID* 2025/2026

Devoir 01 - S01 Mathématiques

Lycée : Taghzirt

TCSF

Exercice 1

Soient h et k les fonctions définies par : $h: x \mapsto x^2 + 6x + 6$ et $k: x \mapsto \frac{2x+3}{x+2}$

- 1. Déterminer D_h et D_k les ensembles de définition de $\,h\,$ et de $\,k\,$.
- 2. Déterminer T_h le taux de variation de la fonction h.
- 3. Déduire les variations de h sur $]-\infty,-\frac{3}{2}]$ et sur $[-\frac{3}{2},+\infty[$.
- 4. Montrer que : $(\forall x \in D_k)$, $k(x) = 2 \frac{1}{x+2}$.
- 5. Déduire les variations de k sur les intervalles de D_k .
- 6. Tracer les courbes (C_h) et (C_k) de h et de k.
- 7. Déterminer géométriquement la solution de : $h(x) \le k(x)$.
- 8. Montrer que : $(\forall x \in D_k)$ $h(x) = k(x) \iff (x+2)(x^2+6x+4)+1=0$.
- 9. Sur l'intervalle [1, 2] :
 - (a) déterminer les variations de h sur [1,2] et h([1,2]);
 - (b) déterminer les variations de k sur h([1,2]);
 - (c) déduire les variations de $k \circ h$ sur [1, 2].

Exercice 2

- 1. Montrer que : $|x| \le 2 \Rightarrow \frac{3}{5} \le \frac{3}{x+3} \le 3$.
- 2. Montrer que : $(\forall n \in \mathbb{N}^*)$ 4 divise $5^n 1$.
- 3. Montrer que : $(\forall n \in \mathbb{N})$ on a : 2 + 4 + ... + (2n) = n(n+1).
- 4. Montrer que : $x \neq 2$ et $y \neq 1 \iff xy + 2 \neq x + 2y$.
- 5. Résoudre l'équation suivante : |3x + 2| = x.
- 6. Montrer que l'équation : $\frac{x^2 + 4x}{x^2 + 4x + 2} = 1$ n'admet pas de solution.
- 7. Trouver *a* et $b \in \mathbb{N}^*$ tel que : (a+2)(b-1) = 15.