Exercice 1

ABC un triangle. G et E deux points tels que : G est le centre de gravité du triangle ABC et E le barycentre du système des points pondérés $\{(A;1);(B;5);(C;-3)\}$.

- 1. Écrire les vecteurs \overrightarrow{AG} et \overrightarrow{AE} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. Montrer que les deux droites (BC) et (GE) sont parallèles.
- 3. Soient I et J deux points tels que : $\overrightarrow{AI} = \frac{5}{6}\overrightarrow{AB}$ et $\overrightarrow{CJ} = \frac{5}{2}\overrightarrow{CB}$.
 - (a) Montrer que I est le barycentre de $\{(A; 1); (B; 5)\}$ et que J est le barycentre de $\{(B; -5); (C; 3)\}$.
 - (b) En déduire que les droites (AJ) et (IC) sont sécantes.
 - (c) Déterminer l'ensemble des points M du plan tel que : $\|\overrightarrow{MA} + 5\overrightarrow{MB} 3\overrightarrow{MC}\| = \|\overrightarrow{MA} + 2\overrightarrow{MB} + \overrightarrow{BC}\|$

Exercice 2

ABC un triangle. On considère les points N, L et E tels que :

B est le milieu de [*AN*];
$$\overrightarrow{AL} = \frac{6}{5}\overrightarrow{AC}$$
 et $\overrightarrow{EC} = \frac{1}{2}\overrightarrow{CB}$

- 1. Construire : *N*, *L* et *E* puis exprimer ces points sous forme de barycentre.
- 2. Montrer que les points *N*, *L* et *E* sont alignés.
- 3. Soit K le milieu de [NE]; $I = bar\{(B; 2), (C; 1)\}$; et $J = bar\{(A; 2), (B; 3)\}$. Construire les points I, J et K.
- 4. Déterminer l'ensemble Ψ de points M du plan tel que : $\|\overrightarrow{MA} + 2\overrightarrow{MB} + 2\overrightarrow{MC}\| = 10$
- 5. On considère le repère : $\mathcal{R} = (A; \overrightarrow{AB}, \overrightarrow{AC})$
 - (a) Vérifier que N(2;0) et $E(-\frac{1}{2};\frac{3}{2})$ puis en déduire les coordonnées du point K.
 - (b) Montrer que : $I\left(\frac{2}{3}; \frac{1}{3}\right)$ et $J\left(\frac{3}{5}; 0\right)$.
 - (c) Montrer que les points I, J et K sont alignés.

Exercice 3

Soit ABC un triangle, et on considère les points G et E tels que :

$$\overrightarrow{BE} - 2\overrightarrow{BC} = \overrightarrow{0}$$
 et $G = bar\{(A; 1); (B; -1); (C; 2)\}.$

- 1. Montrer que E est le barycentre de $\{(B; -1); (C; 2)\}$.
- 2. Montrer que G est le milieu de [AE].
- 3. Soit K le barycentre de $\{(A; 1); (C; 2)\}$.
 - (a) Montrer que les points B, G et K sont alignés.
 - (b) Montrer que *K* est le centre de gravité du triangle *ABE*.
- 4. Déterminer l'ensemble des points M du plan tels que : $2 \times \|\overrightarrow{MC} \overrightarrow{MA}\| = \|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MB} + \overrightarrow{ME}\|$

Exercice 4

ABC un triangle. H un point vérifiant $2\overrightarrow{AH} + \overrightarrow{AB} = \overrightarrow{0}$ et $G = bar\{(A; 3), (B; -1), (C; 2)\}$

1. Montrer que $H = bar\{(A; \alpha), (B; \beta)\}$ où α et β sont des réels à déterminer et $\alpha > 0$

Série : Barycentre

visit www.mosaid.xyz for more!

2. Construire les points G et H.

1BAC.SM

- 3. Montrer que G est le milieu de [HC].
- 4. Soit Γ l'ensemble des points M du plan tels que : $\|\overrightarrow{3MA} \overrightarrow{MB} + 2\overrightarrow{MC}\| \le 2\|\overrightarrow{MA} \overrightarrow{MB}\|$ Déterminer puis construire l'ensemble Γ.
- 5. Dans le plan rapporté à un repère orthonormé $(O; \vec{i}; \vec{j})$ on prendra A(0; 1), B(0; 5) et C(2; 1).

Soit
$$G_m = bar\{(A; -m^2 + 4), (B; m^2 - 2m), (C; 2m)\}$$

- (a) Déterminer les valeurs du paramètre réel m pour que G_m existe.
- (b) Déterminer les coordonnées de G_m en fonction de m.
- (c) Déterminer le lieu géométrique du point G_m lorsque m varie dans \mathbb{R} .

Exercice 5

Le but de cet exercice est la construction du barycentre de 4 points.

ABCD un quadrilatère dans le plan. $G = bar\{(A; 2), (B; 1), (C; -3), (D; 1)\}$.

I. Méthode 1 : (on utilise la propriété caractéristique)

Soit M un point du plan.

- 1. Simplifier: $2\overrightarrow{MA} + \overrightarrow{MB} 3\overrightarrow{MC} + \overrightarrow{MD}$
- 2. Ecrire \overrightarrow{AG} en fonction de \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{AD}
- 3. Construire le point G.
- II. Méthode 2 : (on utilise le barycentre de deux points)

Soient $I = bar\{(A; 2), (B; 1)\}$, $J = bar\{(C; -3), (D; 1)\}$.

- 1. Construire les points I et J.
- 2. En déduire que : $3\overrightarrow{GI} 2\overrightarrow{GJ} = \overrightarrow{0}$ puis construire G.
- III. Méthode 3 : (on utilise le barycentre de trois points)

Soient $K = bar\{(A; 2), (B; 1), (D; 1)\}\$ et $L = bar\{(B; 1), (D; 1)\}\$

- 1. Vérifier que K est le barycentre des points : (A;2), (L;2).
- 2. Vérifier que G est le barycentre des points : (K ;4) et (C ;-3) puis construire G.

Exercice 6

Soit OAB un triangle.

Posons : $\vec{u} = \overrightarrow{OA}$ et $\vec{v} = \overrightarrow{OB}$; et on considère le repère $(O; \vec{i}; \vec{j})$.

- 1) Montrer que pour tout $m \in \mathbb{R}$; le barycentre G du système $\{(O;3),(A;2m+3),(B;-2m+3)\}$ existe.
- 2) Déterminer en fonction de m les coordonnées de G.