www.mosaid.xyz

R. MOSAID

Exercice 1

On considère les fonctions : $f(x) = x^2 + 2x + 2$ et $g(x) = \frac{4x + 2}{x - 1}$

- - (b) Quelle est la nature de \mathscr{C}_f et \mathscr{C}_g ?.....(1pt)
- 2. (a) Développer $(x+1)(x^2-4)$ puis déduire les points d'intersections de \mathscr{C}_f et \mathscr{C}_g(1,5pt)
 - (b) Tracer dans un même repère orthonormé \mathscr{C}_f et \mathscr{C}_g(1,5pt)
 - (c) Résoudre graphiquement $\frac{x+2}{x-1} \ge \frac{x^2}{2} + x$(1pt)
- 3. Soit *F* la fonction définie par : $F(x) = x + 2\sqrt{x 2}$
 - (a) Déterminer la fonction h telle que : $F(x) = f \circ h(x)$(0,75pt)
 - (b) Étudier le sens de variation de F sur $[2, +\infty[$(0,75pt)

Exercice 2

Soit m un paramètre de \mathbb{R}_+^* . On considère la fonction f_m définie sur $D=\mathbb{R}_+^*$ par : $f_m(x)=\frac{2x}{m^2}+\frac{m}{x^2}$

- 1. (a) Montrer que $(\forall (x, y) \in D^2)$ $f_m(x) f_m(y) = (x y) \left(\frac{2}{m^2} \frac{m(x + y)}{x^2 y^2}\right)$(1pt)
 - (b) Montrer que f_m est croissante sur $[m, +\infty[$ et décroissante sur]0, m].....(1,5pt)
- 2. En déduire que : $(\forall x \in D)$ $f_m(x) \ge \frac{3}{m}$. (1pt)

à vérifier.

Exercice 3

- 1. Soit $\alpha \in \mathbb{R}$. On considère l'ensemble suivant : $I_{\alpha} = \{x \in \mathbb{R}/|3x \alpha| < 2\}$.
 - (a) Déterminer l'ensemble I_{α}(1pt)

 - (c) Déterminer les valeurs de α telles que : $I_{\alpha} \subset [1,2]$(1pt)
- 2. On considère les deux ensembles suivants :

 $A = \left\{ (n, m) \in \mathbb{Z}^* \times \mathbb{Z}^* / \frac{1}{n} + \frac{1}{m} = \frac{1}{5} \right\} \quad ; \qquad B = \left\{ x^2 - 2x + / x \in [-1, 2] \right\}$

- (a) Montrer que $A \neq \emptyset$ et $B \neq \emptyset$(0,5pt)
- (b) A-t-on $0 \in B$? Qu'en est-il de 2?......(1pt)
- (c) Montrer que $B \subset [1,5]$. Est-ce que $[1,5] \subset B$?.....(1pt)
- (d) Montrer que $(n, m) \in A \iff (n-5)(m-5) = 25$. Puis déterminer A en extension. (1pt)