www.mosaid.xyz

R. MOSAID

Exercice 1 (9pts)

On considère l'application $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$ $x \mapsto \frac{3x+1}{x-2}$

- 3) On considère l'application $g:]2; +\infty[\rightarrow]3; +\infty[$ $x \mapsto g(x) = f(x)$

- 5) Soit $h: E \to F$ une application.
 - Montrer que $(\forall A, B \in \mathcal{P}(E))$: $A \subset B \Rightarrow h(A) \subset h(B)$ et $h(A \cap B) \subset h(A) \cap h(B)$ 1pt

Exercice 2 (11pts)

On considère les fonctions numériques f et g définies par $f(x) = \sqrt{x+4}$ et $g(x) = x^2 - 4x + 5$.

- 1) Déterminer D_f , D_g puis dresser les tableaux de variations de f et de g. 0.5pt

 - - - c) Déterminer graphiquement en justifiant le nombre de solution de l'équation g(x) = f(x). 0.5pt
 - **d)** Déterminer graphiquement le nombre de solution de l'équation g(x) = m avec $m \in \mathbb{R}$ 0.5pt
 - 7) On considère la fonction numérique φ définie par $\varphi(x) = x^2 4|x| + 5$.
 - a) Vérifier que φ est paire et que $(\forall x \in [0; +\infty[) \quad \varphi(x) = g(x).$ 1pt
 - **b)** Tracer la courbe (C_{φ}) dans le repère précédent en justifiant la méthode de construction. 1pt
 - 8) On considère la fonction numérique h définie sur $[-4; +\infty[$ par $h(x) = x + 9 4\sqrt{x + 4}]$.
 - 9) On considère la fonction numérique k définie par $k(x) = E(x) + E\left(x + \frac{1}{2}\right) E(2x)$.