Direction provinciale de Beni Mellal Prof: *R. MOSAID* 2025/2026 Série : Ensembles & applications Niveau avancé, universitaire

Lycée: Taghzirt

Exercice 1

Dans chacune des questions suivantes, on donne un ensemble $\,E\,$ et des parties $\,A\,$ et $\,B\,$ de $\,E\,$.

Déterminer explicitement les ensembles $A \cap B$, $A \cup B$, $A \cap \overline{B}$ ainsi que $\overline{A} \cap B$.

1.
$$E = \{1, 2, 3, 4\}, A = \{1, 2\}, B = \{2, 4\}.$$

2.
$$E = \mathbb{R}$$
, $A =]-\infty; 2]$, $B = [3; +\infty[$.

3.
$$E = \mathbb{R}, \quad A = \mathbb{N}, \quad B =]0; +\infty[.$$

Exercice 2

Soit A un ensemble, et X , Y et Z des parties de A . Démontrer les propriétés suivantes :

a.
$$C_A(C_A(X)) = X$$
.

b.
$$C_A(X \cup Y) = C_A(X) \cap C_A(Y)$$
 et $C_A(X \cap Y) = C_A(X) \cup C_A(Y)$.

c.
$$X \subset Y \iff C_A(Y) \subset C_A(X)$$
.

Exercice 3

Soient A et B deux ensembles.

- 1. Démontrer que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- 2. Démontrer que $\mathcal{P}(A \cup B) \supset \mathcal{P}(A) \cup \mathcal{P}(B)$. Y a-t-il égalité?

Exercice 4

Soit E un ensemble, A et B deux parties de E. On définit la différence symétrique de A et de B par : $A \triangle B = (A \cup B) \setminus (A \cap B)$.

- a. Que valent $A \triangle A$ et $A \triangle \emptyset$?
- b. Montrer que $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- c. Montrer que $A \triangle B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- d. Montrer que $(A \triangle B) \triangle B = A$.

Direction provinciale de Beni Mellal Prof: *R. MOSAID* 2025/2026 +۱۳۵۸۶۴ | ۱۳۵۷۶۵ م پرزاره النوم الرواند ۱ ماه ۱ ۱۵۹۲۵ م ۱۵۹۲۵ م ۱ ماه ۱ م

Niveau avancé, universitaire

1BAC.SM

Lycée: Taghzirt

Exercice 5

Soit f une application de E vers F. Soient A et A' des parties de E. Soient B et B' des parties de F. Montrer que :

- 1. $A \subset f^{-1}(f(A))$
- 2. $f(f^{-1}(B)) \subset B$
- 3. $f(A \cup A') = f(A) \cup f(A')$
- 4. $f(A \cap A') \subset f(A) \cap f(A')$
- 5. $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$
- 6. $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$

Montrer que si f est injective alors on a l'égalité dans 4).

Exercice 6

Les applications suivantes sont elles injectives, surjectives, bijectives?

- 1. f de \mathbb{N} dans \mathbb{N} définie par f(x) = 2x.
- 2. g de \mathbb{N} dans \mathbb{N} définie par g(x) = 2x + 1.
- 3. h de \mathbb{Z} dans \mathbb{N} définie par h(x) = |x| [x].
- 4. u de \mathbb{R}^+ dans \mathbb{R}^+ définie par $u(x) = \sqrt{x}$.