Lycée: Taghzirt Prof: R. MOSAID

Série : Applications Page : 1/3 2025/2026 Durée : 1BAC.SM

Exercice 1

On considère l'application f définie par : $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 + 4x + 1$

- 1. a) Montrer que $\forall x \in \mathbb{R}$, f(-4-x) = f(x).
 - b) f est-elle injective? Justifier la réponse.
- 2. a) Résoudre dans \mathbb{R} l'équation f(x) = -4.
 - b) f est-elle surjective? Justifier la réponse.
- 3. Montrer que : $f(\mathbb{R}) = [-3, +\infty[$ puis déterminer $f^{-1}([-2, 1])$.
- 4. On considère g la restriction de l'application f sur l'intervalle $[-2, +\infty[$.
 - a) Montrer que g réalise une bijection de $[-2, +\infty[$ vers $[-3, +\infty[$.
 - b) Déterminer l'application réciproque g^{-1} .
- 5. a) Calculer $g(g^{-1}(x))$ pour tout $x \in [-3, +\infty[$
 - b) Calculer $g^{-1}(g(x))$ pour tout $x \in [-2, +\infty[$.

Exercice 2

On considère l'application f définie par : $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (2x+y,x-3y)$

- 1. Montrer que f est injective et surjective.
- 2. Déterminer la bijection f^{-1} de f.

Exercice 3

On considère l'application f définie par : $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{2x}{1+x^2}$

- 1. *f* est-elle injective? Surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. On considère g la restriction de l'application f sur l'intervalle [-1,1].
 - a) Montrer que g réalise une bijection de [-1, 1] vers [-1, 1].
 - b) Déterminer l'application réciproque g^{-1} .

Lycée: Taghzirt Prof: R. MOSAID Série : Applications Page : 2/3 2025/2026 Durée : 1BAC.SM

Exercice 4

On considère l'application f définie par : $f: \mathbb{Z} \times [0,1[\to \mathbb{I} \\ (n,x) \mapsto n+x]$

- 1. Montrer que f est injective et surjective.
- 2. En déduire que f est bijective et déterminer sa bijection réciproque.

Exercice 5

On considère l'application f définie par : $f: \mathbb{N} \to \mathbb{Z}$ $n \mapsto f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{si } n \text{ est impair} \end{cases}$

Montrer que f est bien définie et bijective, et déterminer $f^{-1}(n)$ pour tout $n \in \mathbb{Z}$.

Exercice 6

On considère l'application f définie par : $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(x, y) \mapsto (-x^2, y^2)$

- 1. *f* est-elle injective? Surjective?
- 2. Soit g la restriction de f sur $\mathbb{R}^+ \times \mathbb{R}^-$. Montrer que g est une bijection de $\mathbb{R}^+ \times \mathbb{R}^-$ vers $\mathbb{R}^- \times \mathbb{R}^+$ et définir g^{-1} .

Exercice 7

On considère l'application g définie par : $g: \left[0, \frac{1}{4}\right] \to \left[-\frac{1}{4}, 0\right]$ $x \mapsto x - \sqrt{x}$

Montrer que g est une application bijective, puis déterminer l'application réciproque g^{-1} .

Exercice 8

On considère les applications f et g définies par : $f: \mathbb{R} \to \mathbb{R}^* \\ x \mapsto x - \sqrt{x^2 + 1}$ $g: \mathbb{R} \to [0, 1[$ $x \mapsto x - E(x)]$

- 1. Montrer que f est injective et que g n'est pas injective.
- 2. Montrer que f et g sont surjectives. Déterminer $f^{-1}(\{-1\})$ et $g^{-1}(\{0\})$.
- 3. On considère l'application h définie par : $h : \mathbb{R} \to \mathbb{R}_{-}^{*} \times [0, 1]$ Montrer que h est injective. h est-elle surjective?
- 4. Déterminer l'application réciproque de f.

Lycée: Taghzirt Prof: R. MOSAID Série : Applications Page : 3/3 2025/2026 Durée : 1BAC.SM

Exercice 9

Soient *A* et *B* deux parties d'un ensemble *E* et $\Psi : \mathscr{P}(E) \to \mathscr{P}(A) \times \mathscr{P}(B)$ $X \mapsto (X \cap A, X \cap B)$

- 1. Étude de l'injectivité de Ψ.
 - a) Calculer $\Psi(\emptyset)$.
 - b) Calculer $\Psi(\overline{A \cup B})$.
 - c) Prouver que Ψ est injective si et seulement si $A \cup B = E$.
- 2. Étude de la surjectivité de Ψ.
 - a) Le couple (\emptyset, B) admet-il un antécédent par Ψ ?
 - b) Prouver que Ψ est surjective si et seulement si $A \cap B = \emptyset$.

Exercice 10

Soit $f: E \to F$ une application. Montrer que :

- 1. f est injective $\iff \forall A \in \mathcal{P}(E), A = f^{-1}(f(A)).$
- 2. f est surjective $\iff \forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) = B.$
- 3. f est bijective si, et seulement si, $\forall A \in \mathcal{P}(E)$, $f(C_E^A) = C_F^{f(A)}$.

Exercice 11

Soit A une partie d'un ensemble non vide E. On considère l'application f_A définie par : $f_A: E \to \{0,1\}$

$$x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

- 1. Montrer que : $\forall x \in E$, $f_A(x) + f_{\overline{A}}(x) = 1$.
- 2. Soit B une partie de E.
 - a) Montrer que : $f_{A \cap B} = f_A \cdot f_B$.
 - b) Montrer que : $f_{A \cup B} = f_A + f_B f_{A \cap B}$.

﴿ بِسْمِ ٱللَّهِ ٱلرَّحْمَانِ ٱلرَّحِيمِ يَكَأَيُّهَا ٱلنَّاسُ ٱتَقُواْ رَبَّكُمْ ۚ إِنَّ زَلْزَلَةَ ٱلسَّاعَةِ شَيْءٌ عَظِيمٌ (1) • يَوْمَ تَرَوْنَهَا تَذْهَلُ كُلُّ مُرْضِعَةٍ عَمَّآ أَرْضَعَتْ وَتَضَعُ كُلُّ ذَاتِ خَمْلٍ خَمْلَهَا وَتَرَى ٱلنَّاسَ سُكَارَىٰ وَمَا هُم بِسُكَارَىٰ وَلَاكِنَّ عَذَابَ ٱللَّهِ شَدِيدً (2) • ﴾ (الحج الآيات 2-1)